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Abstract. Sparse Transformers have surpassed Graph Neural Networks
(GNNs) as the state-of-the-art architecture for multi-hop question an-
swering (MHQA). Noting that the Transformer is a particular message
passing GNN, in this paper we perform an architectural analysis and
evaluation to investigate why the Transformer outperforms other GNNs
on MHQA. We simplify existing GNN-based MHQA models and leverage
this system to compare GNN architectures in a lower compute setting
than token-level models. Our results support the superiority of the Trans-
former architecture as a GNN in MHQA. We also investigate the role of
graph sparsity, graph structure, and edge features in our GNNs. We find
that task-specific graph structuring rules outperform the random con-
nections used in Sparse Transformers. We also show that utilising edge
type information alleviates performance losses introduced by sparsity.

Keywords: Transformers · Graph Neural Networks · Question Answer-
ing.

1 Introduction

Multihop question answering (MHQA) is a challenging language understanding
task which involves reasoning over multiple facts often found across multiple
documents [17,19]. Standard sequence models such as LSTM-based models have
struggled on this task due to the need to model long-distance dependencies and
to potentially perform multiple reasoning steps to answer a question.

Facts that are required to answer a question are often linked via common
entities in what is called a reasoning chain [5]. Various MHQA works [7,14,9]
demonstrate that MHQA input can be represented as an entity graph, and that
Graph Neural Networks (GNNs) can be used to encode the graphs and learn to
do reasoning to answer multihop questions. On tasks that involve long sequences,
the Transformer [15] has been shown to exhibit higher task performance than
previous approaches. However, as the Transformer processes information by per-
forming full self-attention between all pairs of input tokens, its compute require-
ments scale quadratically with the number of tokens. This makes modeling very
long token sequences with full self-attention Transformers intractable.
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Sparse Transformers such as the Longformer [2] and Big Bird [20] perform
self-attention between a subset of input token pairs. This allows them to pro-
cess longer token sequences, at the cost of theoretical model expressiveness [20].
Sparse Transformers use rules to construct adjacency matrices that define which
token pairs should communicate. This is conceptually identical to the function
of a GNN, which makes use of an adjacency matrix to communicate node state
information around a graph. GNNs, however, are a much more general class of
models than Transformers. Sparse Transformer models are currently state-of-
the-art on the WikiHop MHQA dataset [17], although a GNN-based model [9]
is competitive with Sparse Transformers on the HotpotQA dataset [19].

In this paper, we aim to improve the performance of entity graph-based GNN
models on the WikiHop dataset by leveraging the observation that the Trans-
former is a specific instance of a GNN in the message-passing framework. Typi-
cally, Transformer models operate at the token level only. However, we show that
the GNN architecture can be substituted with a Transformer without changing
any other part of the MHQA pipeline. The GNN-based MHQA pipeline involves
encoding documents independently before aggregating token representations into
course grained nodes. These nodes correspond to token spans in the document
and can represent entities, sentences, and even whole documents. Finally, these
node representations are encoded by a GNN [14,9], before being used to predict
an answer. Despite the success of the Transformer, to the best of our knowledge,
it has not previously been evaluated in such a GNN-based MHQA setting.

We consider a set of architectural design choices in GNN-based MHQA mod-
els, incorporating best practices established in the Transformer literature. We
focus on three aspects in particular. First, we compare additive attention and
scaled dot product (SDP) attention as used by Graph Attention Neural Networks
(GAT) [16] and the Transformer respectively. We find that while both forms of
attention perform favourably when compared to a non-attention baseline, SDP
attention results in our best task performance.

Second, we evaluate the use of the Transformer’s residual connections and
position-wise Feed Forward Neural Networks (FFNN) in-between self-attention
layers, which we refer to as the Transformer Update Function (TUF). We com-
pare this to the position-wise gating mechanism common in GNNs [7,14]. We
find that while gating has mixed effects on task performance, the TUF improves
performance in all tested settings. Furthermore, we find that SDP attention pairs
especially well with the TUF.

Third, we investigate graph structure and edge information in our GNN-
based MHQA model. Full self-attention outperforms task-specific sparse atten-
tion when no edge information is available, supporting the idea that sparsity
degrades model expressiveness [20]. However, when edge information is avail-
able, our task-specific sparse attention model outperforms the full self-attention
model, indicating that edge information alleviates some disadvantages of sparse
models.



From GNNs to Sparse Transformers 3

2 Background

Graph Neural Networks (GNNs) were introduced to generalise Convolutional
Neural Networks (CNNs) to non-Euclidean data [18]. GNNs have been applied
widely due to the generality of the data they can model, and their natural
modeling of sparsity. In this work we consider GNNs that can be defined in the
message passing framework, which are able to operate on graphs of arbitrary
topology [18]. After introducing this framework, we use it to define the Graph
Attention Neural Network (GAT) [16], and the Transformer [15].

2.1 Message Passing GNNs

A graph can be represented by a set of n nodes and an edge matrix E ∈ Zn×n

whose entries represent the edge types between any two nodes, with Eij = 0
indicating that nodes i and j are unconnected. We use the notation given in the
following equations to describe the general form of updating a single node state
(hi ∈ Rf ) in the kth message passing GNN (MP-GNN) layer.

1. Message:
Mk

ij = ϕk(hk
i ,h

k
j , Eij), (1)

2. Aggregate:

Ak
i =

∑
jϵN(i)

ωk(Mk
ij ,h

k
i ,h

k
j ), (2)

3. Update:
hk+1
i = γk(hk

i , A
k
i ). (3)

Here ϕk is the message function at layer k and Mk
ij is its output which

represents the message vector being passed to node i from node j along a single
edge Eij . ω

k is the aggregate function which prepares the message Mk
ij to be

summed with all messages bound for node i. This sum forms a single aggregated
message Ak

i to be passed to node i, which represents information from N(i), the
set of node i’s neighbour nodes as defined by the edge matrix E, represented
by their node indices. γk is the update function which combines the aggregated
message Ak

i with the nodes current state hk
i to create the node’s state at the

next layer, hk+1
i . The full algorithm for using these equations to encode a set of

node states is given as Algorithm 1.

2.2 Attention

In order to define the GAT and Transformer as MP-GNNs we first define their
attention mechanisms, restricted to the case of a single head for clarity. Ad-
ditive attention involves the use of a multilayer perceptron (MLP) to predict
compatibility scores between pairs of vectors:

MLP(hi,hj) = σ(Concatf (Wvhi;Wvhj)Wa), (4)
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Algorithm 1 MP-GNN Node Encoding Procedure

Require:
Initial node features {h1

1, ..,h
1
n}

Edge matrix E ∈ Zn×n

1: for all k ∈ {1, .., L} do
2: for all i ∈ {1, .., n} do
3: Ak

i ← Zeros(f) ∈ Rf

4: for all j ∈ N(i) do
5: Mk

ij ← ϕk(hk
i ,h

k
j , Eij)

6: Ak
i ← Ak

i + ωk(Mk
ij ,h

k
i ,h

k
j )

7: end for
8: hk+1

i = γk(hk
i , A

k
i )

9: end for
10: end for
11: return {hL

0 , ..,h
L
n}

where Wa and Wv are model weights and Concatf denotes concatenation along
the feature dimension. Finally, σ is a non-linear activation function.

Scaled dot product (SDP) attention calculates compatability scores as:

Dot(hi,hj) =
(hiWq)(hjWk)

T

√
f

, (5)

where Wq and Wk are model weights for queries and keys respectively.
The compatibility scores Sij are computed using either MLP(.) or Dot(.)

for every pair of nodes i and j. The softmax function is used to normalise the
compatibility scores and produce attention scores:

α(hi,hj) = softmaxj(Sij) =
exp(Sij)∑l
k=1 exp(Sik)

. (6)

To distinguish the use of additive or SDP attention in our models, we denote
the GAT’s additive attention as αg and the Transformer’s SDP attention as αt.

2.3 GAT

We define the message passing equations for the GAT, in the case of a single
attention head.

1. Message:
ϕk(hk

i ,h
k
j , Eij) = Wvhj , (7)

2. Aggregate:
ωk(Mk

ij ,h
k
i ,h

k
j ) = αg(h

k
i ,h

k
j )M

k
ij , (8)

3. Update:
γk(hk

i , A
k
i ) = σ(Ak

i ). (9)
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Here, Wv ∈ Rf×f is a learned linear transformation. The additive attention
function αg is used in the aggregate step.

2.4 Transformer

While not typically thought of as a GNN, the Transformer [15] in fact performs
message passing over the elements inputted to it. These elements are typically
referred to as tokens, however they can naturally be considered as nodes. The
standard Transformer performs full self-attention, meaning all nodes are con-
nected to all nodes. Using the Transformer to model sparse graphs is an imple-
mentation detail, but typically would involve masking out the attention matrix
with an adjacency matrix. This allows the Transformer to operate over arbitrary
graph topology. The Transformer is described using the message passing nota-
tion using the equations that follow.

1. Message:
ϕk(hk

i ,h
k
j , Eij) = Wvhj , (10)

2. Aggregate:
ωk(Mk

ij ,h
k
i ,h

k
j ) = αt(h

k
i ,h

k
j )M

k
ij , (11)

3. Update:
γk(hk

i , A
k
i ) = TUF(hk

i , A
k
i ). (12)

Here the SDP attention function αt is used. The other difference is that the
Transformer uses the TUF update function introduced in the original Trans-
former paper [15]. The Transformer Update Function (TUF) consists of residual
connections, Layernorms [1], and a Feed Forward Neural Network (FFNN), for-
mally given by equations:

TUF(x1,x2) = Norm(x′ + FFNN(x′)), (13)

x′ = Norm(x1 + x2). (14)

Norm is the LayerNorm [1] function, and FFNN is an MLP with a single hidden
layer.

Both the Transformer and GAT make use of multi-headed attention. While
the details differ slightly between the two models, the concept is the same. Multi-
headed attention involves computing multiple attention scores for every pair of
nodes using distinctly parameterised functions (heads). These multiple atten-
tion scores are then used to perform multiple weighted sums which are then
combined. Making use of multiple attention heads increases the theoretical ex-
pressiveness of the attention mechanism [15], possibly by allowing different heads
to focus on different criteria when comparing vectors [6]. Multi-headed attention
is compatible with the message passing framework, but for brevity we omit its
definitions. When the Transformer is viewed as an MP-GNN, the multi-headed
attention block is the GNN’s message and aggregate functions, while the rest of
the operations all fall under the GNN’s update function.
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2.5 Gating and over-smoothing

MHQA GNN’s commonly [14,7] employ some form of a gating [13] mechanism.
Gating can be used in a GNN’s update function to modulate how neighbour
node information updates node states. We consider a particular gating function
common in GNN-based MHQA models [7,14], defined as:

G(x1,x2) = tanh(u)⊙ g + x1 ⊙ (1− g), (15)

u = x1Wu + x2, (16)

g = σ(Concatf (x1,u)Wg), (17)

where ⊙ denotes element-wise multiplication. Wg ∈ R2f×f and Wu ∈ Rf×f

are learned matrices. Using gating this way in a GNN’s update function is be-
lieved to reduce the over-smoothing problem [14]. Over-smoothing prevents the
effective use of deep GNNs. It is thought to be caused by the loss of node iden-
tities as node representations become more similar to each other every layer
[4].

Although the Transformer is an MP-GNN, it does not suffer from the over-
smoothing problem, with extremely deep Transformers like GPT3 [3] (96 layers)
producing state-of-the-art results. This may be due to the use of residual connec-
tions in the TUF, which are not commonly used in GNN-based MHQA models.
Thus, in this work we investigate whether the TUF and gating are complimen-
tary, or if one is superior to the other.

3 Model

We introduce our Graph Neural Network (GNN)-based Multihop Question An-
swering (MHQA) model. The model is trained to answer multiple-choice ques-
tions in the form of a question q, a set of text passages Sq containing information
needed to answer the question, a set of answer candidates Cq, and the answer
aq ∈ Cq. For WikiHop, the question comes in the form of the semantic triple
(Subject, Relationship, ?) where Subject is an entity and “?” the answer to be
predicted. We use heuristic rules proposed by previous work [14] to construct
graphs based on the question inputs. The model uses a pre-trained token em-
bedder such as GloVe [11] or BERT [8], alongside a parameterised Transformer-
encoder to create graph node embeddings. The graphs are then encoded by the
GNN, and the graph encodings are used to predict the answer to the question.

3.1 Graph Construction

We follow the Heterogeneous Document Entity model (HDE) [14] to construct
a graph composed of entities, answer candidates, and documents for a given
multiple-choice question. These graphs are heterogeneous in that they contain
multiple node and edge types. They also include information at multiple levels of
granularity, namely the phrase-level entity and candidate nodes, and the course-
grained document nodes. An example is shown in Figure 1.
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Fig. 1. An example graph used in our model, similar to HDE graphs [14], shown here
together with node and edge types.

Entity nodes represent token spans in containing documents. The entities
considered by our model are only those which are either a string match with any
of the answer candidates, or the subject entity found in the question. There is an
entity node for each extracted entity mention in each document. Therefore there
may be multiple entity nodes representing identical text from different locations:
these are referred to as co-mentions. The other node types are: a document node
for each supporting document, and a candidate node for each answer candidate.

A set of heuristic rules connect nodes with the following edge types:

1. Document nodes connect to entity nodes extracted from the document.

2. Document nodes are also connected to candidate nodes if their text is found
in the document.

3. Comention Edge: Entity comentions are connected. This edge type enables
connecting mentions of the same entity across long distances in the input.

4. Entity nodes are connected to the candidate node whose text it matches.

5. All candidate nodes are connected to each other.

3.2 Graph Node Embedding

The first step in constructing embeddings for each of the graph nodes is to
generate token embedding sequences for each document Si

q, candidate Cj
q , and

the query q. The token embeddings are obtained by use of a pre-trained token
embedder such as GloVe or BERT. This involves first breaking the text up into
tokens recognised by the embedder’s vocabulary, and then using the embedder
to produce a vector for each token. This yields token matrices Xq, X

i
s, and Xj

c

for the query, ith document, and jth candidate respectively. Beyond this point,
the model architecture is not affected by the choice of token embedder.

Each node represents a token span, i.e., it corresponds to a subsequence of
one of the token matrices. We refer to these subsequences of token matrices as
node matrices, and denote the node matrix for a node with index t as Xt ∈ Rl×f

for a node with l tokens within its span.
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We concatenate the query token matrix Xq with each node matrix Xt, and
encode the result with a Transformer encoder Transc:

Xqt = Transc(Concats(Xq, Xt)), (18)

where Concats denotes concatenation along the sequence dimension. The output
of the Transformer is a query-aware matrix Xqt. We use the vector corresponding
to the first token in the sequence Xqt as our initial node embedding h0

t .

3.3 GNN Encoding

We use message passing GNNs with L-layers to encode the graphs. We con-
sider several GNN variations: We compare additive attention, SDP attention
and a GNN without attention. We also consider using the Transformer Update
Function (TUF), gating, both, or neither.

GNN Cores with Edge Types We introduce the term GNN Core to refer to
the choice of message and aggregate functions in a GNN. All our GNNs include
edge type embeddings. Given the edge matrix E ∈ Zn×n such that Eij represents
the edge type between nodes i and j, the edge embeddings are defined as

Vij = EdgeTypeEmb(Eij) ∈ Rf , (19)

where EdgeTypeEmb maps each unique edge type to a learned f -dimensional
vector.

We define three GNN cores:

1. SDP-Att Core. The SDP attention mechanism with edge type embeddings
as described by the Relative Positional Embedding Transformer [12].

2. MLP-Att Core. A version of the GAT modified to use edge type embeddings
with additive attention.

3. Mean Core. A version of a GNN without attention similar to previous GNN-
based MHQA models, modified to use edge type embeddings.

All of our GNN Cores share the same message function, which applies a linear
transformation to the node embedding and adds the edge type embedding:

ϕ(hk
i ,h

k
j , E) = Wvh

k
j + Vij . (20)

Next, we define the aggregate function for each of the GNN Cores.
i. Mean Core Aggregate:

ωk(Mk
ij ,hi,hj) =

Mk
ij

|N(i)|
. (21)

ii. SDP-Att Core Aggregate:

ωk(Mk
ij ,hi,hj) = αt(hi,hj)M

k
ij . (22)

iii. MLP-Att Core Aggregate:

ωk(Mk
ij ,hi,hj) = αg(hi,hj)M

k
ij , (23)
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Table 1. Model hyperparameters for all experiments.

Hyper Parameter Value

Training Epochs 30
Learning Rate (LR) 0.01
LR Schedule Exponential Decay 0.9
Dropout 0.1
Batch Size 1
Num GNN layers 9
Model Dimension 300 for GloVe 512 for BERT
Num GNN Heads 4 if attention-based

Update Functions As a GNN update function we consider the gating function
G described in section 2.5, the TUF described in section 2.4, or composing them
together as follows:

γ(hk
i , A

k
i ) = G(hk

i ,TUF(hk
i , A

k
i )). (24)

It is also possible to use neither, as the canonical GAT [16] does.

3.4 Output Model

Finally, our model outputs a probability distribution over answer candidates Cq.
The output of the Lth GNN layer is a set of encoded node states denoted hL

i for
the ith node. For each candidate c ∈ Cq the model extracts the set of all entity
node vectors which correspond to candidate c: Ec = {hL

i ∀i | i is a mention of c}.
Candidate score cs is based on both entity and candidate node states:

cs = MLPc(h
L
c ) +maxe∈Ec

(MLPϵ(e)), (25)

where MLPc and MLPϵ are MLP’s to score candidates and entities respectively.
The final probability distribution over all candidates is obtained by performing
a softmax over the candidate scores cs.

4 Experimental Setup

We train and evaluate our models on the WikiHop MHQA dataset [17]. WikiHop
follows the multiple choice MHQA structure described in section 3. Table 1
shows the hyperparameters used in all of our experiments. No model-specific
hyperparameter tuning was performed for any of the results. The model (hidden
state) dimension is determined by the dimensionality of the token embedder,
i.e., 300 for GloVe-based models and 512 for BERT-based models. We use an LR
scheduler with exponential decay [10]. In preliminary experiments mini-batching
(using a batch size greater than 1) did not improve performance.



10 Shane Acton and Jan Buys

Fig. 2. Edge density vs. memory used for dense and sparse attention implementations.
Tested with 500 graph nodes, 100 features per node, and 10 attention heads.

Fig. 3. Plots showing how the critical edge density changes while varying (a) the
number of features per node, and (b) the number of attention heads.

4.1 Implementation

Our models are implemented in Pytorch. We use Pytorch Geometric1 to imple-
ment our GAT and MLP-based GNNs. For our SDP GNNs we use the native Py-
torch implementation of the Transformer’s multi-headed attention. Tokenisation
is either word-based to be compatible with the GloVe vocabulary, or performed
using Huggingface’s subword tokenisation utilities for our BERT-based models.2

Sparse and Dense GNN Implementations Pytorch Geometric is designed
to be optimal for sparse graphs (the sparse approach). The Transformer imple-
mentation (the dense approach) is optimised for fully connected graphs, although
it can also model sparse graphs. The sparse approach’s memory requirements
scale linearly with the density of the inputted graph, while the dense approach’s

1 https://pytorch-geometric.readthedocs.io/en/latest/
2 https://huggingface.co/

https://pytorch-geometric.readthedocs.io/en/latest/
https://huggingface.co/
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Table 2. MHQA accuracies on the Wik-
iHop development set for our best GNN
configurations using GloVe or BERT em-
beddings, compared to the HDE (the best
previous GNN-based model) and BigBird
(the best-performing Transformer).

Model Dev Accuracy

GNN (GloVe) 66.0
GNN (BERT) 71.4

HDE [14] 68.1
BigBird [20] 75.9

Table 3. WikiHop development set ac-
curacies of our GloVe-based GNN models
with different architectural choices.

Gating ✗ ✓ ✗ ✓

TUF ✗ ✗ ✓ ✓

GNN Core Dev Accuracy

Mean 52.7 58.5 62.5 60.2
MLP-Att 29.0 62.9 60.4 64.0
SDP-Att 13.0 61.4 66.0 64.7

memory requirements are independent of graph density. However, the dense ap-
proach requires less memory when operating on fully connected graphs.

We analyse the memory requirements of these two implementation approaches
for SDP attention, comparing memory usage across graphs of varying edge den-
sities. This allows us to find the critical edge density (hereafter referred to as
the critical density) where the optimal implementation changes. Figure 2 shows
that the critical density is 0.033, meaning only graphs with edge densities less
than 0.033 should be implemented with the sparse approach.

We further investigate how varying the number of nodes, number of attention
heads, and number of features per node affects the memory scaling of the two
implementation approaches. We found that the number of nodes has no signifi-
cant relationship with Critical Density. Figure 3 (a and b) shows that when the
number of features is very small, or the number of heads is very large, the sparse
approach may be preferable, but only for very sparse graphs. Therefore, in all
but the most extreme cases the memory requirements of the dense approach will
be lower. The PyTorch Geometric implementation is therefore suboptimal for
tasks such as multi-hop question answering.

5 Results

All results presented in this section are accuracies on the WikiHop development
set.3 Table 2 shows the results of our best performing models when using GloVe
and BERT as token embedders. These two models make use of the SDP-Att
Core and the TUF without gating. The performance of our model with GloVe
embeddings is lower than that of HDE [14]. HDE uses character n-gram em-
bedding embeddings in addition to GloVe and a custom attention mechanism
for getting node embeddings from token embeddings, which we substituted for
a Transformer encoder. Using BERT as token embedder however, our model is
more accurate than HDE, which is to date the highest performing GNN-based

3 Evaluation on the hidden test set was not possible due to incompatible software
versions on the evaluation portal.
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Table 4. WikiHop development set accu-
racies of our GloVe-based GNNs, compar-
ing sparse vs fully connected graphs, with
or without edge embeddings.

Sparsity Edge
Embeddings

Dev
Accuracy

✓ ✓ 64.7
✗ ✓ 64.4
✓ ✗ 60.2
✗ ✗ 61.5

Table 5. Task-specific vs random graph
structure, with or without edge embed-
dings on the WikiHop development set,
sing BERT-based GNNs

Structure Edge
Embeddings

Dev
Accuracy

Task-Specific ✓ 68.2
Task-Specific ✗ 64.4

Random ✓ 63.8
Random ✗ 64.5

MHQA model on the WikiHop dataset. Our best performing model falls short of
the performance of the BigBird Sparse Transformer [20]. BigBird encodes token
sequences directly, and the full model is pre-trained with Masked Language Mod-
eling (MLM), while in our approach only the BERT token encoder is pre-trained.
BigBird makes use of random connections between tokens, in combination with
some rule-based connections. However, it does not include edge type information
to distinguish these distinct edges.

5.1 GNN Architecture

Table 3 shows the performance of our GNN-based MHQA model with various
GNN Cores as well as different update functions (Gating and/or TUF). The
results demonstrate a number of key findings. First, the attention-based GNN
Cores (MLP-Att and SDP-Att) outperform the GNN without attention (Mean
Core) in most settings. The attention-based GNNs also achieve better maximum
task performances. Second, when neither gating nor the TUF is included, all
evaluated GNN variants perform worse. TUF boosts task performance in all
settings where it is included. Finally, the attention-based GNNs are especially
reliant on the TUF and/or gating compared to the non attention-based GNN
Core.

The Mean Core and SDP-Att Core models perform best when the TUF is
used without gating. On the other hand, the combination of gating and the TUF
is beneficial for MLP-Att Core. Thus we can draw no clear conclusion about the
use of gating in our GNNs as these results may be due to noise.

5.2 Graph Structure and Edge Embeddings

Table 4 compares models which use sparse graphs against variants which use
fully connected graphs (similar to the vanilla Transformer). The GNNs used in
this experiment all use SDP-Att Core with gating and the TUF. Here sparse
graphs are the rules-based task-specific graphs described in section 3. We con-
struct fully connected graphs by starting with our sparse graphs, and adding
in a new edge type unconnected which connects all unconnected nodes. Thus,
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there is no loss in edge information when comparing our sparse and fully con-
nected graphs, although we also evaluate without using edge embeddings. The
results demonstrate that without edge information, using fully connected graphs
performs better than sparse graphs. However, when including edge information,
sparse graphs can produce similar performance.

Table 5 compares the use of task-specific graph structure based on rules devel-
oped in the GNN-based MHQA literature [14] against random sparse structure.
In this experiment we use GNNs with SDP-Att Core including gating and the
TUF, using BERT as token encoder. Here, the random structure involves re-
placing edges with random edges, defined by randomly selecting two nodes to
connect. We do not replace (Candidate-Candidate) edges with random edges.
This ensures that candidates remain fully connected to each other. This random
shuffling preserves the number of edges.

In random graph structure with edge embeddings, the edge type is simply the
tuple of the node types which it connects (e.g., Candidate-Entity). The results
clearly show that task-specific structure in combination with edge information is
important to model performance. Neither task-specific structure nor edge infor-
mation alone significantly boosts model performance. This serves to validate the
specific graph structuring rules which have been developed in the GNN-based
MHQA literature [14].

6 Discussion

There are several limitations to how much can be claimed about the generaliz-
ability of our experimental results. Due to high computational requirements we
only trained a single model per configuration, without model-specific hyperpa-
rameter tuning. We also only evaluated on a single dataset for which the test
set was unavailable. However, we believe our results are nonetheless valuable
and may spur further research into the connection between GNNs and Sparse
Transformers.

Bigbird, the Sparse Transformer, [20] makes use of random connectivity to
decrease the average number of connections between each node. Our results indi-
cate that random connectivity should be replaced by problem-specific structure
where possible. Our results also motivate the use of edge type information along-
side the problem specific structure. Finally, our results demonstrate the value
of using SDP attention in combination with the TUF, exactly as is done in the
Transformer model [15]. Given the popularity of the GAT GNN, there may be
many models which could benefit from (1) switching from additive attention
to SDP attention, and (2) including the TUF in the GNN’s update function.
Essentially, this is a recommendation to replace existing attention-based GNNs
with the Transformer. Our empirical analysis on memory requirements in section
4.1 also indicate that for graphs used in realistic Natural Language Processing
scenarios, using a vanilla Transformer implementation is preferable to a message
passing implementation which is optimised for sparse graphs.
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Many token-level NLP models make use of end-to-end pre-training to prepare
the model for the final task [8,20]. GNN-based NLP models, including ours, do
not make use of end-to-end pre-training, instead relying only on pre-trained
token embedders [14,9]. This motivates the future development of pre-training
strategies for GNN-based NLP models. A graph-based model which performs on
par with Sparse Transformers would reduce the memory requirements compared
to token-level models.

7 Conclusion

We implemented and evaluated a simplified version of the GNN-based Heteroge-
neous Document Entity (HDE) MHQA model. We used the WikiHop dataset to
evaluate two primary differences between the GAT and the Transformer, namely
(1) the type of attention mechanism, and (2) the use of the Transformer Update
Function (TUF) as an update function. Our results serve as a case study moti-
vating the use of scaled dot product (SDP) attention and the TUF — essentially
the canonical Transformer. We also investigate the role of graph sparsity, graph
structure, and edge information in our MHQA model. Our results demonstrate
the value in task-specific graph structure rules over random connectivity and
fully connected graphs with an emphasis on the use of problem specific edge
information. The results further indicate that without edge information, task-
specific connection rules may not yield performance gains over random sparse
connections or fully connected graphs. These insights may provide a path to im-
proving token-level Sparse Transformer performance. Finally, our results show
that there is room for further research to close the performance gap between
token-level models and graph-level models with coarse-grained nodes.
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