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Abstract. Sentiment transfer involves changing the sentiment of a sen-
tence, such as from a positive to negative sentiment, while maintain-
ing the informational content. Given the dearth of parallel corpora in
this domain, sentiment transfer and other text rewriting tasks have been
posed as unsupervised learning problems. In this paper we propose a self-
supervised approach to sentiment or text style transfer. First, sentiment
words are identified through an interpretable text classifier based on the
method of rationales. Second, a pretrained BART model is fine-tuned
as a denoising autoencoder to autoregressively reconstruct sentences in
which sentiment words are masked. Third, the model is used to gener-
ate a parallel corpus, filtered using a sentiment classifier, which is used
to fine-tune the model further in a self-supervised manner. Human and
automatic evaluations show that on the Yelp sentiment transfer dataset
the performance of our self-supervised approach is close to the state-
of-the-art while the BART model performs substantially better than a
sequence-to-sequence baseline. On a second dataset of Amazon reviews
our approach scores high on fluency but struggles more to modify sen-
timent while maintaining sentence content. Rationale-based sentiment
word identification obtains similar performance to the saliency-based
sentiment word identification baseline on Yelp but underperforms it on
Amazon. Our main contribution is to demonstrate the advantages of
self-supervised learning for unsupervised text rewriting.

Keywords: Text Style Transfer · Self-Supervised Learning · Transform-
ers.

1 Introduction

Advances in large language models have enabled the generation of high-quality
open-ended text [12, 20]. However, without fine-grained control, generated text
has limited practical value. Despite some advances in controllable text genera-
tion, for example in writing text in a legal style [6], the transfer of text from
one sentiment or style to another while maintaining the content of the source
sentence [13] is still a challenging problem. Style transfer has a number of use-
cases, including mitigating harmful content [22] in text, rewriting text in a more
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Fig. 1: An example of a sentence rewritten from positive to negative sentiment,
with the sentiment words in bold. To rewrite the text, sentiment words are
identified and removed, leaving the sentence content (bottom). The content is
then rewritten in the desired sentiment.

modern style [8], or de-formalising a piece of text [21]. However, one of the
key challenges that differentiates sentiment and style transfer from other text
transduction tasks is the lack of parallel corpora.

In this paper we extend previous unsupervised approaches to text sentiment
transfer by utilizing self-supervised learning for rewriting sentences. Our ap-
proach extends one of the main paradigms to text sentiment and style transfer
[13, 29, 23] that identifies and deletes sentiment-specific words and learns senti-
ment transfer through sentence reconstruction conditioned on the target senti-
ment (Figure 1). Our work builds on previous approaches in three ways: First, we
utilise the method of rationales [11, 1], a neural network-based approach from the
interpretability literature, to identify and mask sentiment words. This replaces
the previous heuristic n-gram saliency approach [13, 29]. Second, we fine-tune a
pretrained BART [12] model to reconstruct masked sentences, which enables gen-
erating sentences with a different sentiment autoregressively. BART, pretrained
with a denoising autoencoder (DAE) objective, is a natural fit for sentence recon-
struction training. Third, we use self-supervised training to further improve the
model’s performance utilising its own generations: The fine-tuned model is used
to generate a high-precision parallel corpus of sentences in opposite sentiments,
on which BART is fine-tuned further to improve its style transfer accuracy.

We evaluate our approach on Yelp and Amazon review datasets [4]. We
compare rationale-based sentiment word identification to the saliency-based ap-
proach, and BART to a sequence-to-sequence (Seq2Seq) [25] model with Long
short-term memory (LSTM) [5]. Results using both automatic and human eval-
uations show that rationale-based sentiment word identification performs on par
with the saliency-based approach on the Yelp dataset, but underperforms it on
the Amazon dataset when used with the BART model. On the Amazon dataset
BART obtained higher BLEU score but reduced sentiment transfer accuracy
compared to the Seq2Seq model. Self-supervised training improves sentiment
transfer accuracy on both datasets. Rationale-based sentiment word identifica-
tion obtains similar performance to the saliency-based sentiment word identifi-
cation baseline on the Yelp dataset while offering fine-grained control over the
trade-off between content preservation and sentiment transfer accuracy. However
it underperforms on Amazon due to its structure which makes it harder to iden-
tify style words. BART outputs were rated higher by human evaluators than the
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sequence-to-sequence models’ on both datasets, in particular due to better flu-
ency. The performance of our approach is close to that of state-of-the-art models
[29, 27] on Yelp, but lower on Amazon.

2 Background

The goal of text style transfer is to change some attribute of a sentence, such
as its style or sentiment, while maintaining its content [13]. Due to the lack of
parallel corpora across different styles in most domains [23], text style transfer
is usually approached as an unsupervised learning problem, learning from non-
parallel examples of text in different styles.

There are two main paradigms of approaches to sentiment and style transfer.
In the first paradigm, sentences are seen as a combination of content and style
elements. The style words are removed and the model is trained to reconstruct
the full sentences from the content elements plus a token representing the style of
the sentence. The model is effectively a semi-supervised denoising autoencoder
(DAE), where the style words are removed based on some pre-defined criteria.
The Delete Retrieve Generate (DRG) [13] model implements this paradigm by
using a heuristic n-gram saliency-based approach to identify style-specific words.
A sequence-to-sequence LSTM is trained with a DAE objective to reconstruct
the original sentence. Additionally, the “retrieve” step retrieves relevant words
or sentences in the target style, and conditions on this when generating sentences
in the target style. We use the delete-only version of DRG as a baseline in this
paper, as our BART-based model is trained similarly without a retrieval step.
Figure 1 gives an example of sentiment transfer by deleting sentiment words and
then rewriting the sentence in the target sentiment.

Subsequent work extends DRG to use a Transformer [26] instead of an LSTM
while utilising the attention weights of the model to identify which words to re-
move [23], and uses a pretrained BERT [2] model that learns to fill in masked out
style words [29]. This formulation simplifies learning but it limits the application
of style transfer to be narrowly defined as deleting and replacing words.

The other paradigm to text style transfer involves encoding the input sen-
tence in a latent representation, manipulating the encoded representation, and
then decoding the sentence in another style. Wang et al. [27] utilise a Trans-
former to learn a latent representation of a sentence comprising both style and
content, and then use a pretrained classifier to edit the entangled latent repre-
sentation. Logeswaran et al. [14] and Lample et al. [10] approach style transfer as
a combination of autoencoder (reconstruction) and back-translation objectives,
while He et al. [3] apply variational inference to generalise these approaches.

3 Sentiment Word Identification

We review a widely-used approach to sentiment word identification based on
n-gram saliency, and introduce our approach to apply an interpretable neural
classifier to identify and mask or remove sentiment words.
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Let D = (x(1), c(1), ..., (x(m), c(m)) be the training set of sentences x(j) each
annotated with sentiment marker c(j), where in our application the sentiments
are restricted to c(j) ∈ C = {positive,negative}, and Dc denotes the subset of
sentences in sentiment c.

3.1 Saliency Noising

DRG [13] uses a heuristic approach to identifying sentiment-specific words. This
approach is conceptually similar to term frequency inverse document frequency
(TF-IDF) where words that have higher discriminative power are weighted higher.
The salience of word or n-gram w with respect to sentiment c is calculated as

s(w, c) =
count(w,Dc) + λ

(
∑

c′∈C,c′ ̸=c count(w,Dc′ )) + λ
, (1)

where λ is a smoothing parameter. The method identifies w as a sentiment
marker for sentiment c if s(w, c) > γ, where γ is the saliency threshold.

3.2 Rationales Noising

Motivation Interpretable neural network-based text classifiers identify which
words are most important for a classifier’s classification decision for a given input.
Gradient-based methods such as Integrated Gradients [24] sum the gradients
across input features in order to understand which parts of the input are most
sensitive to changes in the output. In this manner it uncovers the contribution of
each feature to the output, enabling identifying the features or rules the model
uses to make decisions.

Another approach for interpretable neural networks is the method of ratio-
nales [11]. This method aims to understand how a neural network-based classifi-
cation model reaches its prediction by identifying the words or phrases that are
essential for the model to achieve the correct sentence classification. The model
learns a binary mask over the input sentence that learns to mask words which
do not contribute to the rationale. Bastings et al. [1] extends this work using the
Hard Kumaraswamy distribution to enable the differentiable binary masking of
tokens. In contrast to Integrated Gradients, which provides a real number rep-
resenting the contribution of each feature to a model’s output, the method of
rationales identifies a discrete set of tokens most impacting the classification.

In the context of sentences written in a particular sentiment, the words that
are most important in classifying its sentiment will most likely be the senti-
ment words of a sentence. We therefore propose a novel approach to identifying
sentiment words based on interpretable classifiers.

Method Given an input sentence x, the method of rationales [11, 1] defines
a latent binary variable Zi corresponding to each sentence token xi, indicating
whether xi is included in the rationale for the classification decision. For each
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sentence, the tokens in x that do not form part of the rationale are masked out,
while the unmasked words are used as input to a trainable classifier that predicts
the sentiment marker c. Masking can be formulated as taking the element-wise
Hadamard product of the latent variable and the sentence tokens, i.e., z ⊙ x.

The rationales (masks) Zi can each be seen to be derived from a Bernoulli
distribution, and the sentence classification variable C from a categorical distri-
bution:

Zi|x ∼ Bern(gi(x;ϕ)), (2)

C|x, z ∼ Cat(f(x⊙ z; θ)). (3)

Functions gi(x;ϕ) and f(x ⊙ z; θ) are neural networks based on the LSTM [5]
architecture and are parameterised by ϕ and θ respectively.

To enable differentiable training with respect to a discrete set of masks,
a modified version of the Kumaraswamy distribution [9] called the Hard Ku-
maraswamy distribution is employed [1]. The reparameterization trick [7] is
utilised during training. The per-example loss function is defined as

−EP (z|x,ϕ)[logP (c|x, z, θ)] + λ

n∑
i=1

zi, (4)

where λ is a hyper-parameter. The first part of the loss is the lower bound
on data log-likelihood logP (c|x), the likelihood of the sentiment label given the
sentence x. The second part is a sparsity loss to prevent the model from choosing
the entire sequence as the rationale. We do not include an additional loss used
by [1] that encourages choosing longer contiguous stretches of words.

4 Self-Supervised Text Sentiment Transfer

The training pipeline for our approach comprises five steps: training a classifier,
training and applying the rationales sentence noiser, training the BART DAE,
generating a high-precision parallel corpus, and finally self-supervised training.
The training process is visualized in Figure 2.

Classifier Training A BART encoder is fine-tuned to classify the sentiment of
sentences in the training corpus (step 1 in Figure 2). This classifier is used for
self-supervised training.

Sentence Noising The rationales model [1] is trained as a (second) sentiment
classifier. The extracted rationales are represented as a vector of binary masks
for each sentence. Each token that is part of the rationale is replaced with a
<mask> token or removed in the case of the sequence-to-sequence model. This
process is shown in step 2 of Figure 2. We refer to the masking or removal
of sentiment-specific words from the sentences used as input to the sentiment
transfer models as noising, as both the BART and seq2seq models are trained
as DAEs. We train rationale extraction models with different noising levels, and
as sentiment word identification baseline we also use saliency-based noising.
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Fig. 2: Overview of classifier pretraining, sentence noising, and DAE training in
the BART training pipeline.

DAE Model Training BART [12] is a pretrained encoder-decoder Transformer
that can be seen as a generalisation of BERT [2] as the encoder and GPT [19]
as the decoder. BART is trained with a DAE objective in which encoder input
tokens are randomly masked (and permuted) and the input is reconstructed
autoregressively by the decoder.

In our approach the BART encoder-decoder is fine-tuned as a DAE to recon-
struct the sentences in the training corpus in which the sentiment words have
been masked with a <mask> token, using either the rationale-based or saliency-
based method. No word permutation is done. The sentiment token (<pos> or
<neg>) is appended as the first input token in the decoder. This is shown as
step 3 in Figure 2.

The model is trained to optimise the negative log-likelihood of each of the
sentences that it aims to reconstruct:

LDAE = −
m∑
j=1

log p(x(j)|Mask(x(j))), (5)

where Mask(x) represents the sentence with the sentiment words masked out.
Early stopping is performed based on the accuracy of validation sentences

translated to the opposite sentiment, as measured by the classifier trained in
step 1. Every fixed number of batches 1 000 sentences from the development
set are sampled and masked and fed to the partially fine-tuned BART model to
translate by seeding the decoder with the sentiment token opposite of the origi-
nal sentence. Sentiment transfer accuracy is measured by feeding the generated
output sentences to the classifier trained in step 1.

Parallel Corpus Generation We apply the fine-tuned BART model to gen-
erate a parallel training set of sentences in opposite sentiments by translating all
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the (masked) sentences from the training set. This is shown as step 4 in Figure 2.
Sentences are generated auto-regressively using greedy decoding, where the next
word with the highest probability of occurring is chosen deterministically. Minor
formatting corrections such as removing double spaces and some excess punctua-
tion is also necessary. The generated sentences are filtered so that only sentences
classified as having been accurately transferred into the target sentiment (using
the classifier from step 1) are kept.

Self-Supervised Training Finally, the BART model is fine-tuned further to
translate sentences from one sentiment to another with self-supervised training
(step 5 in Figure 2). Here, we use the term self-supervised as the parallel training
set was generated and filtered entirely by the model. In this training step original
(unmasked) sentences are used as inputs, as we found that the model obtains
higher sentiment transfer accuracy in such a setting. The same setup is followed
at test time.

The self-supervised training loss is defined as

LSS = −
∑

(x,y,c,c′)∈D′

logP (y|x, c′), (6)

where D′ represents the new dataset of generated parallel sentences with y as
the generated sentence translated from sentiment c to sentiment c′. The model
is trained until the early stopping criterion is met where translation accuracy
does not improve over three validation checks of 250 batches each.

5 Experimental Setup

5.1 Data

We use two common sentiment transfer datasets, which are truncated versions
of Yelp and Amazon reviews that have been categorised as either positive or
negative [4]. The training sets have 440k and 555k training examples, and an av-
erage sentence length of 7.9 and 13.8 tokens, respectively. The test sets include
human-annotated reference translations which are used to calculate the auto-
matic evaluation Bilingual Evaluation Understudy (BLEU) scores [15]. These
scores measure the reliability of the content of the generated sentences in the
new sentiment with respect to a gold standard set of sentences.

5.2 Sentiment Word Identification

We use the original implementation of the rationales model [1] to learn sentiment
token identification.1 To test the impact of different levels of token masking or
removal on sentiment transfer accuracy and content consistency of the generated
sentences, five levels of rationales-based noising are used, namely 15%, 20%, 30%,

1 https://github.com/bastings/interpretable predictions
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40% and 50%. There is some variance in the actual level of noising achieved per
sentence, and also some discrepancy between the mean level of noising constraint
fed to the model and the mean level of noising achieved.

As a sentiment word identification baseline we use a PyTorch implementation
of the saliency-based method [18].2 Saliency noising achieves a mean level of
token masking or removal of 32.4% on Yelp and 31.1% on Amazon, so it is
closest to the rationales 30% noising scheme. However its inter-sentence variance
is higher than that of rationales noising.

The rationales model [1] is trained for 20 epochs with an Adam optimizer with
learning rate set to 2e-4, and a batch size of 128. Pretrained GLoVE embeddings
[16] are used with an embedding size of 300. For saliency noising the smoothing
parameter, λ is set to 1; spans of up to four words are considered as attribute
markers; and γ, the threshold for the saliency score, is set to 15 and 5.5 for Yelp
and Amazon respectively. These hyperparameters follow [13], in which they were
chosen through tuning on the development set.

5.3 Sentiment Transfer Models

We use the HuggingFace Transformers [28] pretrained implementation of BART-
Base with a language modelling head. Due to a degree of stochasticity in the
results each version of the model was trained three times and the final accuracy
and BLEU results of the three runs averaged on the test set for reporting. During
validation and testing, all sentences are generated using greedy decoding. This
lead to better performance than sampling-based decoding, where each word is
sampled based on the next word probability distribution.

BART-Base consists of six encoder and decoder blocks in the encoder and
decoder with 139 million parameters in the model. The dimensionality of the
model is dmodel = 768. The weights are optimized using the Adam optimizer
with a learning rate of 2e-5 which was empirically found to achieve the best
results. We use early stopping if the translation accuracy fails to improve for
3 consecutive validations, which are conducted every 250 batches. This is to
prevent model over-fitting and is used due to the model appearing to learn very
quickly from the data. A batch size of 64 is used for training due to memory
constraints. All the parameters are fine-tuned except the positional embeddings.

As a non-pretrained baseline we use the delete-only Seq2Seq model of [13],
utilising the PyTorch implementation of [18]. This model is also trained with
various levels of token masking using the rationales model, in addition to using
the saliency method. This model uses word-based tokenization with a vocabulary
size of 16,000, in contrast to the word-piece tokenization used in BART. The
model is trained utilising an Adam optimizer with learning rate of 2e-4. The
model is trained for 70 epochs for both datasets. The embedding dimension
is kept at the default of 128 and hidden dimension of the LSTM encoder and
decoder is kept as 512 as per the original paper.

2 https://github.com/rpryzant/delete retrieve generate
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Table 1: Classification accuracy and BLEU score of BART and Seq2Seq models
for different levels of token masking or removal for the Yelp and Amazon datasets.

Yelp Amazon

BART Seq2Seq BART Seq2Seq

Noising Accuracy BLEU Accuracy BLEU Accuracy BLEU Accuracy BLEU

15% 70.3 29.4 49.0 24.3 28.5 37.4 39.2 19.5
20% 74.5 27.7 69.2 16.1 31.4 33.5 40.0 29.6
30% 78.6 26.3 72.0 17.8 35.2 27.2 42.4 22.3
40% 83.5 21.1 81.2 13.6 48.1 23.1 51.7 16.4
50% 93.7 13.6 92.0 8.74 44.7 18.1 58.8 11.0
Saliency 74.2 26.2 82.2 15.1 53.6 37.0 47.4 21.3

Wu et al. (2019) 97.3 14.4 - - 84.5 28.5 - -
Wang et al. (2019) 95.4 22.6 - - 85.3 34.1 - -

6 Results

6.1 Automatic Evaluation

We evaluate our approach based on the accuracy of rewriting sentences from one
sentiment to another as assessed by the pretrained classifier, as well as by the
BLEU score [15] comparing generated sentences with a set of reference human
translated sentences.3 BLEU represents the outputs’ content preservation, and
to a lesser extend their fluency. For both models sentiment word identification
is performed with rationale-based noising with different noising levels as well as
with the saliency-based sentiment word identification baseline.

Table 1 gives the results of both our BART-based self-supervised model and
our replication of the delete-only Seq2Seq DAE model of [13]. The table reports
BART test set results with the full training pipeline including self-supervised
learning. Additionally we include the results of Wu et al. [29] and Wang et al.
[27], which are state-of-the-art on the Yelp and Amazon datasets, respectively. As
an ablation experiment we found that BART with only DAE training obtains
style transfer accuracies that are between 4.3% and 20.4% lower than includ-
ing self-supervised training (across different levels of rationales noising on both
datasets). This highlights how effective the models are at learning the sentiment
of a sentence conditioned on a sentiment token. This is especially evident as
sentence noising or token masking increases. However, it also highlights the lim-
itations of training without the paired synthetically generated self-supervised
training set. These gains in accuracy are likely due to the model learning an
explicit mapping from one sentiment to another when using the synthetically
generated training set. This is in contrast to learning to simply replace masked
words in a sentence conditioned on a sentiment token.

3 We use SACREBLEU [17] with default settings to calculate the BLEU score.
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Fig. 3: Test set sentiment transfer vs. BLEU score for BART (solid blue line)
and Seq2Seq (striped red line) on the Yelp dataset.

The results on the Yelp dataset shows that our BART-based model achieves
higher accuracy and higher BLEU scores than the Seq2Seq model for the same
level of rationale-based noising. Saliency-based noising leads to a higher BLEU
score but lower classification accuracy on BART compared to the Seq2Seq base-
line. On the Amazon dataset BART achieves higher BLEU but lower accuracy
than Seq2Seq for all the levels of rationale-based noising. Saliency-based noising
leads to the highest overall trade-off between accuracy and BLEU score, as can
be seen in Figure 4. Seq2Seq with 50% rationale-based noising, however, obtains
the highest overall classification accuracy.

The trade-off between sentiment transfer accuracy and content preservation
as measured by BLEU is visualised in Figures 3 and 4. The higher the level of
noising, the better a model is able to transfer from one sentiment to another but
the less faithful the translation is to the content of the original sentence. The
existence of this trade-off is consistent with previous sentiment transfer research
[29, 13]. With rationale-based noising BART achieves a better trade-off than the
Seq2Seq baseline on the Yelp dataset. The performance of saliency-based noising
is similar to that of rationale-based noising with a similar BLEU score on both
models, although on Seq2Seq saliency noising is slightly preferable.

On the Amazon dataset the BART model’s trade-off across different noising
levels is almost identical to that of the Seq2Seq model. BART’s high performance
with saliency noising is an outlier here compared to the rationale-based models.
The combination of BART’s ability to generate more fluent sentences and the
saliency-based method for masking or removing n-grams of up to four tokens
may explain the better performance of that configuration. The results show that
all of our models obtain relatively low sentiment transfer accuracies compared



Self-Supervised Text Style Transfer 11

Fig. 4: Test set sentiment transfer vs. BLEU score for BART (solid blue line)
and Seq2Seq (striped red line) on the Amazon dataset.

Table 2: Human evaluation results (scores scale 1 to 5, higher is better) on the
Yelp and Amazon datasets.

Yelp Amazon

Model Content Sentiment Fluency Content Sentiment Fluency

BART 30% - - - 3.4 3.4 3.9
BART 40% 3.9 4.4 4.1 - - -
BART 50% 3.2 4.5 4.1 2.8 3.8 3.9
Seq2Seq Saliency 3.4 3.9 3.4 3.3 3.2 3.5

Wu et al. (2019) 4.0 4.4 4.2 4.1 4.0 4.0
Wang et al. (2019) 3.5 3.6 3.8 4.2 4.0 4.1

to the state-of-the-art, suggesting that the Amazon dataset may be less suitable
to sentiment transfer based on identifying individual sentiment words.

On Yelp our best model’s performance is close to that of state-of-the-art
approaches, although both [29] and [27] obtain a slightly better trade-off between
accuracy and BLEU. This is shown by these models having accuracy and BLEU
scores that lie above the average trade-off, represented by the solid blue line in
3. The simpler structure of examples in the Yelp dataset makes it particularly
suitable for the word-based “Mask and Infill” approach [29].

6.2 Human Evaluation

Due to the limitations of automatic evaluation in text generation tasks such
as sentiment and style transfer, we performed a human evaluation, broadly fol-
lowing the methodology of [13] and subsequent work on style transfer. Amazon
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Mechanical Turk crowd-workers were asked to rate a sample of 100 sentiment
transferred generations for each of the models included in the evaluation. The
evaluation assesses the fluency, sentiment transfer accuracy and content preser-
vation of the generations, each scored using a Likert scale from 1 to 5. Each
output was evaluated by three evaluators.

The results are shown in Table 2. We include the rationale-based BART
models with the best trade-off between accuracy and BLEU according to the
automatic evaluation (40% noising on Yelp and 30% on Amazon) and the high-
est overall accuracy (50% noising), as well as the baseline Seq2Seq model with
saliency noising. The human evaluation results of Wu et al. [29] and Wang et al.
[27], as reported in the original papers, are given as an additional comparison.

The results show that the BART-based models clearly outperform the Seq2Seq
baseline on both datasets, with the exception of BART 50%’s content preserva-
tion. BART 50% obtains higher sentiment transfer accuracy and similar fluency
than the BART models with less noising, but lower content preservation. On
Yelp and Amazon the BART-based models obtain higher sentiment transfer ac-
curacy than the Seq2Seq baseline on the human evaluation despite similar or
lower automatic classification accuracies. Content preservation is broadly in line
with the BLEU scores. The increased fluency of the BART models can be at-
tributed to its pretraining compared to the Seq2Seq baseline which is trained
from scratch. This may also explain why BART achieves higher BLEU scores
than the Seq2Seq model for the same level of noising.

Compared to state-of-the-art models, the BART 40% model performs better
on Yelp than [27] and on par or within 0.1 evaluation points of [29]. Our approach
therefore obtains state-of-the-art performance despite performing slightly worse
on the automatic evaluation. On Amazon the BART 50% model obtains senti-
ment and fluency scores within 0.2 points of the state-of-the-art (compared to
the automatic classifier which showed a much greater gap in sentiment transfer
accuracy), but much worse content preservation. BART 30%’s content preserva-
tion is higher but still far below that of the state-of-the-art, and at the expense
of lower sentiment transfer accuracy.

In spite of these mixed automatic evaluations, the higher human evaluations
still show a clear benefit to using the pretrained model for generation. This
suggests that fluency ratings may have an inadvertent impact on other human
ratings and that more fluent model outputs are preferred by human evaluators.
This is the case even if sentiment translation accuracy, as measured by automatic
evaluations, does not match that of a less fluent model.

6.3 Qualitative Analysis

A selection of model outputs on the test data, along with the original sentences
and reference human sentiment translations, are shown in Tables 3 and 4. In
the first and last Yelp examples the Seq2Seq model manages to translate the
sentence, but fluency is worse when compared with the source sentence. While
the BART 40% model manages to preserve the content of the sentences, the
BART 50% and Seq2Seq models are less successful.
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Table 3: Original, reference translation and model sentiment transfer output
examples on the Yelp test set.

Model Output

Original but was very disappointed with what actually arrived.
Reference was very happy with what arrived.
BART 40% / 30% everything was very good with what actually arrived.
BART 50% but was very happy with what they did.
Seq2Seq Saliency but it was very nice and easy to say that was dessert.

Original i do not like the size of the dance floor.
Reference i love the size of this dance floor!
BART 40% / 30% i also really like the size of the dance floor.
BART 50% i also really liked the feel of the dance floor.
Seq2Seq Saliency i like the size of the dance floor.

Original its quiet and nice people are here.
Reference nice people are here, but it is too quiet and boring
BART 40% / 30% its dirty and rude people are here.
BART 50% its not like they are very busy.
Seq2Seq Saliency its quiet people are here.

Although the translation of the first Amazon sentence seems to be relatively
obvious, the correct translation of the second and third examples appears less
obvious. This is predominantly due to the ambiguity of the sentiment of the
original sentences in these examples. These examples also show how the sentence
content can become corrupted during sentiment transfer, both with the Seq2Seq
examples and some of the BART 50% examples.

7 Conclusion

We proposed a self-supervised training pipeline for text style or sentiment trans-
fer. We diverge from previous work by using an interpretable classifier to iden-
tify which sentiment words to mask or remove, and by fine-tuning a pretrained
encoder-decoder Transformer, first as a DAE and then with self-supervised learn-
ing. The outputs of our models are preferred by human evaluators over a non-
pretrained baseline with saliency-based sentiment word identification. The BART
model also obtains a better trade-off between sentiment transfer accuracy and
content preservation according to automatic evaluation. On Yelp the perfor-
mance of our approach is comparable to the state-of-the-art, although on the
Amazon dataset the approach performs less well. Self-supervised learning im-
proves performance over a model that is already pre-trained and fine-tuned as
a denoising autoencoder. As future research this method could be extended to
text style transfer for low resource languages, given that parallel sentences are
not required.
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Table 4: Original, reference translation and model sentiment transfer output
examples on the Amazon test set.

Model Output

Original the cookbook that comes with it is adequate.
Reference the cookbook that comes with it is terrible.
BART 40% / 30% the cookbook that comes with it is terrible.
BART 50% the cookbook that came with it was terrible.
Seq2Seq Saliency the only good thing i ve used it is with it is adequate.

Original it s almost like putting the phone into a high end pair of socks.
Reference it s almost like putting the phone into a low end pair of socks.
BART 40% / 30% it s not like putting the phone into a high end pair of shoes.
BART 50% it s not even worth the effort into a single pair of socks.
Seq2Seq Saliency it s almost like they are not into a high end pair of socks.

Original so not that great for leaving on at night.
Reference perfect for night
BART 40% / 30% so far that works for leaving on at night. great product.
BART 50% so far that works for me on at work.
Seq2Seq Saliency so not that great for leaving a timer on.
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