Low-resource NLP for African Languages: Initial Explorations

Jan Buys

Department of Computer Science

University of Cape Town

African Languages

Linguistic diversity in Africa:

- >2000 languages (Ethnologue)
 Major language families:
- Atlantic-Congo
- Afroasiatic
- Nilo-Saharan
- Khoisan

Language Modelling

- Large pretrained language models (BERT, GPT-3, etc.) have been very successful for both language understanding and language generation
- Can we transfer some of this success to NLP for African languages?

3

Language Modelling

Challenge 1: Low resource languages

- Size of easily available datasets:
 - English (C4):**10.4 TB**HIGH RESOURCEisiZulu (C4):**839 MB**LOW RESOURCE

isiZulu (NCHLT): **12 MB** LOW RESOURCE Sepedi (NCHLT): **9.9 MB** LOW RESOURCE

Language modelling

Challenge 2: Rich morphology

• Words may consist of multiple small meaningful units (morphemes)

Examples (isiZulu):

- wukutholakala
- -> wu u ku thol akal a
- negzinkonzo
- -> nga i zin konzo

This talk

- Low-resource language modelling for South African languages
- Morphological segmentation for Nguni languages

• Predict the next word in a word sequence

https://jalammar.github.io /illustrated-word2vec/

7

• Language modelling: Assign a probability to a sequence of words, one word at a time

$$P(W_1^n) = \prod_{k=2}^n P(w_k | W_1^{k-1})$$

• Example:

Ubusuku obuhle namaphupho amamnandi

context

- Example applications of language models
 - Machine Translation
 - P("high winds tonight") > P("large winds tonight")
 - Spell Correction
 - P("about fifteen minutes from") > P("about fifteen minuets from")
 - Speech Recognition
 - P("recognize speech") > P("wreck a nice beach")
 - P("I saw a van") >> P("eyes awe of an")
 - P("I ate a cherry") >> P("eye eight uh Jerry")
- In deep learning, vector representations learned by language models are used as the "foundation" of downstream models

South African Languages

• 11 Official languages

Two largest language groups:

- Nguni languages
- Sotho/Tswana languages

• Language modelling for South African Atlantic-Congo languages

Corpus	Training Tokens (000's)	Valid/test Tokens (000's)
NCHLT (isiZulu)	978.6	122.3
Isolezwe (isiZulu)	940.2	117.5
NCHLT (Sepedi)	1357.3	169.7

 Focus on isiZulu and Sepedi, but some experiments using all 9 languages

Language models:

- n-gram model (modified Knesser-Ney smoothing)
- Feed-forward neural networks
- Recurrent neural networks LSTMs and QRNNs
- Transformers

Goals:

- Tune and evaluate models systematically to determine which kind of model is most suited for this setup
- Determine if multilingual modelling has advantages

Open vocabulary language modelling

- The languages are agglutinative, which creates some problems for using the word as fundamental unit
- Split words into subwords using byte pair encoding (BPE)
- Unseen words can then be split in the same way, eliminating the unknown word problem
- The subword vocabulary size is a hyperparameter

Byte-pair encoding

Example on a toy corpus

• The initial vocabulary is the set of characters

Byte-pair encoding

 Iteratively merge the most frequent pair of adjacent characters/subwords

Merge	Current Vocabulary
(ne, w)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new
(l, o)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo
(lo, w)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low
(new, er_)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer
(low,)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer, low

• Byte-pair encoding for isiZulu and Sepedi:

Ubusuku obuhle namaphupho amamnandi! Ubu_suku obu_hle nama_phupho ama_mnandi !

Robalang gabotse **R_o_ba_la_ng gabotse**

n-gram language models

• These models make a Markov assumption: The probability of a word is conditioned only on a fixed number of previous words:

$$P(w_1 w_2 \dots w_n) \approx \prod P(w_i \mid w_{i-k} \dots w_{i-1})$$

• In other words, each next word probability is approximated as

$$P(w_i \mid w_1 w_2 \dots w_{i-1}) \approx P(w_i \mid w_{i-k} \dots w_{i-1})$$

 Probabilities are estimated by counting *n*-grams and "smoothing" the counts to improve the estimates

• Feedforward neural network language model:

Jurafsky and Martin (2020) Ch. 9

18

• Recurrent neural network (RNN) language model:

Jurafsky and Martin (2020) Ch. 9

RNN Language models:

- Basic LSTM: Standard model with input/output dropout
- AWD LSTM (Merity et al., 2018):
 - DropConnect for hidden-to-hidden connections
 - Variational dropout over inputs and outputs
 - Word dropout
 - Variable length backpropagation
 - L1 and L2 regularization
- Quasi-RNN (Bradbury et al., 2017):
 - More efficient model
 - Similar regularization and optimization to AWD LSTM

Transformer language model

- Based on GPT-2 architecture
- Dropout over all parameters
- Model was tuned extensively, but does not use the more sophisticated techniques of AWD LSTM

Evaluation:

• Intrinsic evaluation of LMs is based on test set entropy

$$H(W_1^n) = -\frac{1}{n}\log_2 P(W_1^n)$$

• Word-based models uses perplexity, but for open-vocabulary models we use bits per character (BPC) – normalize by number of characters *c*

$$BPC(W_1^n) = \frac{n}{c}H(W_1^n)$$

• Results: NCHLT (isiZulu)

Model	# Params Vocab		BPC	
n-gram	7.5M	500	1.588	
FFNN	4.7M	8000	1.572	
Basic LSTM	3.3M	5000	1.548	
AWD LSTM	29.8M	5000	1.325	
QRNN	29.5M	10000	1.323	
Transformer	8.6M	8000	1.391	

• Results: Isolezwe (isiZulu)

Model	# Params Vocab		BPC	
n-gram	6.9M	500	1.544	
FFNN	5.7M	10000	1.532	
Basic LSTM	3.3M	5000	1.677	
AWD LSTM	29.8M	5000	1.259	
QRNN	29.5M	10000	1.264	
Transformer	8.6M	8000	1.320	

• Results: NCHLT (Sepedi)

Model	# Params Vocab		BPC	
n-gram	5.7M	2000	1.656	
FFNN	5.1M	8000	1.723	
Basic LSTM	3.3M	5000	1.625	
AWD LSTM	29.8M	5000	1.421	
QRNN	29.5M	5000	1.421	
Transformer	7.1M	2000	1.495	

• Multilingual models: Train on all 9 languages, or on all languages from the same language group (Nguni or Sotho-Tswana)

Conclusions:

- AWD-LSTM and QRNN outperformed other models with minimal adjustment from the hyperparameter ranges of English models
 - May be due in particular to sophisticated regularization techniques
- Smaller Transformer models come close in BPC
- Relatively similar performance across languages
- Multilingual training improves performance without any architectural changes

- Task of splitting words into *morphemes*
- Goal: Develop data-driven models for segmentation (previous work on SA languages was rule-based)
- Here we focus on the South African Nguni languages: isiZulu, isiXhosa, isiNdebele, and siSwati
- The Nguni languages are *agglutinative* and written *disjunctively*

Two types of segmentation:

- <u>Surface segmentation</u>: a word w is segmented into a sequence of substrings. The concatenation of the substrings reproduces the original word W.
- <u>Canonical segmentation</u>: a word is analysed and segmented into a sequence of canonical morphemes, Each canonical morpheme corresponds to a surface morpheme as its orthographic representation.

Example:

ngezinkonzo

nge-zin-konzo

nga-i-zin-konzo

Data gives canonical segmentation: process to induce surface form

• Dataset sizes (number of words):

Language	Train Dev Test
isiZulu	$17\ 778\ 1\ 777\ 3\ 298$
isiXhosa	$16\ 879\ 1\ 688\ 3\ 004$
isiNdebele	$12 \ 929 \ 1 \ 119 \ 2 \ 553$
siSwati	$13\ 278\ 1\ 080\ 1\ 347$

• Canonical segmentation: Frame as a sequence-to-sequence problem

Input: selayisense Prediction: sa-i-li-layisense

Encoder-decoder neural networks:

- LSTM
- BiLSTM with attention
- Transformers

• Results: Canonical segmentation (F1 score)

Analysis

• Sample outputs:

```
Input: ngaphansi
Prediction: nga-phansi
```

```
Input: nemisebenzi
Prediction: na-i-mi-sebenzi
```

```
Input: elisebenzisayo
Prediction: eli-sebenz-is-a-yo
```

Transformer Attention:

Surface segmentation:

Frame segmentation as a sequence labelling problem with BIO tagging

BIIBIIBI III ngezinkonzo

• Use Conditional Random Fields (CRFs) as sequence labelling model

$$S(X,Y) = \sum_{i=0}^{n-1} s(X,y_i,y_{i+1}) \qquad p(Y|X) = \frac{e^{S(X,Y)}}{\sum_{\tilde{Y} \in Y^{|X|}} e^{S(X,\tilde{Y})}}$$

34

Surface segmentation with Conditional Random Fields (CRFs)

- Traditional CRFs: The features are hand-crafted
- **Bi-LSTM-CRFs:** The Bidirectional LSTM Recurrent Neural Network component generates the features

• Results: Surface segmentation

Model	Language	Precision	Recall	F1 Score
Baseline CRF	isiNdebele	97.94	96.62	97.27
	isiXhosa	97.16	97.13	97.14
	isiZulu	97.88	96.82	97.35
	siSwati	97.17	96.40	96.78
Bi-LSTM-CRF	isiNdebele	96.59	96.21	96.40
	isiXhosa	94.88	95.61	95.24
	isiZulu	96.64	96.64	96.64
	siSwati	90.59	91.48	91.03

- Unsupervised segmentation: How well can segment without any annotated morphological segmentations?
- Entropy-based model:
 - Train a character-based language model
 - Intuition: At the start of a new morpheme the entropy will increase (less predictable), while inside a morpheme the entropy will decrease (more predictable)
 - Different entropy-based segmentation criteria can be formulated
 - Extend Mzamo et al. (2019) to use neural language models instead of n-gram language models
- Train on larger text corpora

• Results: Unsupervised Segmentation

- Work in progress: Joint language model and (unsupervised) morphological segmentation model
- Extend previous work on unsupervised word segmentation (Kawakami et al., 2019)

Ongoing Research

Neural Machine Translation for South African languages

- Projects on both Nguni and Sotho-Tswana languages Investigating different data augmentation techniques:
- Backtranslation
- Multilingual training (related languages)
- Related language word replacement

As a baseline, also apply the same techniques to phrase-based Statistical Machine Translation

- <u>Low-Resource Language Modelling of South African Languages</u> *Stuart Mesham, Luc Hayward, Jared Shapiro, Jan Buys.* AfricaNLP workshop at EACL 2021.
- <u>Canonical and Surface Morphological Segmentation for Nguni</u> <u>Languages</u> *Tumi Moeng, Sheldon Reay, Aaron Daniels, Jan Buys*. AfricaNLP workshop at EACL 2021.

• Some additional experiments by Francois Meyer

Enkosi kakhulu

• jbuys@cs.uct.ac.za