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Abstract

This thesis investigates the role of linguistically-motivated generative models
of syntax and semantic structure in natural language processing (NLP). Syn-
tactic well-formedness is crucial in language generation, but most statistical
models do not account for the hierarchical structure of sentences. Many appli-
cations exhibiting natural language understanding rely on structured semantic
representations to enable querying, inference and reasoning. Yet most semantic
parsers produce domain-specific or inadequately expressive representations.

We propose a series of generative transition-based models for dependency syn-
tax which can be applied as both parsers and language models while being
amenable to supervised or unsupervised learning. Two models are based on
Markov assumptions commonly made in NLP: The first is a Bayesian model
with hierarchical smoothing, the second is parameterised by feed-forward neu-
ral networks. The Bayesian model enables careful analysis of the structure
of the conditioning contexts required for generative parsers, but the neural
network is more accurate. As a language model the syntactic neural model
outperforms both the Bayesian model and n-gram neural networks, pointing
to the complementary nature of distributed and structured representations for
syntactic prediction. We propose approximate inference methods based on par-
ticle filtering. The third model is parameterised by recurrent neural networks
(RNNs), dropping the Markov assumptions. Exact inference with dynamic
programming is made tractable here by simplifying the structure of the condi-
tioning contexts.

We then shift the focus to semantics and propose models for parsing sentences
to labelled semantic graphs. We introduce a transition-based parser which in-
crementally predicts graph nodes (predicates) and edges (arguments). This
approach is contrasted against predicting top-down graph traversals. RNNs
and pointer networks are key components in approaching graph parsing as an
incremental prediction problem. The RNN architecture is augmented to con-
dition the model explicitly on the transition system configuration. We develop
a robust parser for Minimal Recursion Semantics, a linguistically-expressive
framework for compositional semantics which has previously been parsed only
with grammar-based approaches. Our parser is much faster than the grammar-
based model, while the same approach improves the accuracy of neural Ab-
stract Meaning Representation parsing.
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Chapter 1

Introduction

Natural language enables humans to express complex thoughts through linear sequences of

discrete symbols (words), usually organised into sentences. The syntax of natural language

defines which words and sentences are well-formed. Although language is expressed as

strings, its syntactic structure is hierarchical (Chomsky, 1957; Everaert et al., 2015) which

linguists typically characterise as trees. Syntax also drives the semantics of natural lan-

guage as the meaning of words and phrases are composed into larger units, enabling the

expression of complex relations between entities, eventualities and modifiers, typically ex-

pressed by directed graphs.

There has recently been a surge in the use and usability of applications that are driven

by natural language processing (NLP). This has been driven by the coalescence of the

availability of unprecedented amounts of natural language data, on-device and cloud-based

computational power, and advances in machine learning driven by neural networks. Deep

learning refers to the process of training large, multilayer neural networks on large amounts

of data, and their application to various machine learning problems. Example NLP appli-

cations include machine translation, automatic speech recognition and synthesis, dialogue-

based personal and home assistants, text prediction, and automatic extraction of struc-

tured information from text. Language processing is also employed for web-search, au-

tomatic advertisement placement and stock market prediction, and has huge potential in

the biomedical and legal domains.

Traditionally, many NLP models for language understanding or generation tasks are

pipeline approaches which perform linguistic analysis at different levels (including syntax

and semantics) and then make predictions based on sparse features over the predicted lin-
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guistic representations. In contrast neural networks have been shown to be very successful

at learning vector embeddings of words that capture lexical semantics, as well as embed-

ding phrases or sentences and representing words in context. Many neural network NLP

models are trained end-to-end; all the components of the model are optimised together from

the raw input with an objective function based on the task, rather than learning to predict

linguistic structure as an intermediate step. Deep learning models with relatively simple

underlying structure and little feature engineering (though containing millions of learnable

parameters and requiring careful selection of hyperparameters that control model capacity

and learning) have improved the state of the art in a range of NLP tasks. This raises ques-

tions about the future role of explicit models of syntactic and semantic structure in natural

language processing.

In this thesis we argue that structured and distributed representations are complemen-

tary in their representational and predictive power for natural language processing. Neural

networks can be used to predict more expressive structured representations more accurately

than previously possible. This creates more opportunities for using structured representa-

tions in downstream NLP applications. On the other hand, neural models trained for struc-

tured prediction can learn more informative distributed representations, which can be used

in end-to-end models without necessarily preforming inference over the structure during

application.

We propose generative and incremental models of syntactic and semantic structure.

We define probabilistic models over sentences, syntax trees and semantic graphs. We view

syntax both in terms of predicting dependency trees, and part of generative models that

define probability distributions over sentences. We also propose probabilistic models for

linguistically-expressive semantic graphs that are aligned to words and phrases in the sen-

tences they represent and grounded in broad-coverage lexicons.

1.1 Background

1.1.1 Syntactic and semantic structure

The structure of language is deeper than the observed sequential structure. In order to

recognize whether sentences are well-formed, and to assign meaning to them, their syn-

2



Mary did not give the boys anything

nsubj

aux
neg det

iobj

dobj

Figure 1.1: A syntactic dependency tree. Arcs indicate head→modifier dependencies, and
are labelled with dependency relations.

tactic structure has to be modelled. To illustrate the need for syntax to determine well-

formedness, we give two examples (* indicates ill-formedness):

1. (a) Mary did not give the boys anything.

(b) Mary gave the boys nothing.

(c) * Mary gave the boys anything.

2. (a) The boys who went to school are still away.

(b) * The boys who went to school is still away.

The first example concerns negative polarity items, which require an overt negative ele-

ment (Everaert et al., 2015). Negation can be expressed either by negating the verb (did not

give) or the polarity item (nothing), but a positive statement would require a different con-

struction. The relation between the two positions is determined by the syntactic structure of

the sentence, not the linear ordering (there can be an arbitrary long distance between them).

The second example displays subject-verb agreement in English, where the number of the

subject (singular or plural) determines the form of the verb (is/are). Again, the subject-verb

relation is determined by hierarchical rather than linear structure.

Syntactic structure is usually expressed as trees. In this thesis we focus on dependency

trees (see Section 2.2 for definitions), which denote syntactic structure through a tree struc-

ture in which the words in the sentence are the nodes in a graph and the edges between

nodes represent relations between words (known as bilexical relations). Dependency pars-

ing is widely used in NLP due to being light-weight relative to constituency parsing or more

linguistically expressive formalisms, while dependency relations are equivalent or close to

semantic relations which can be used for downstream tasks. Dependency treebanks are

available in over 40 languages.1 An example dependency tree is given in Figure 1.1.
1http://universaldependencies.org
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John wants to leave

ARG1
ARG2

ARG1

Figure 1.2: A semantic dependency graph.

While syntax plays an important role in determining semantic interpretation in most

linguistic theories, syntactic structure is not equivalent to semantic structure. In syntactic

dependencies nodes can only have one head (forming a tree structure), while in semantic

dependencies that is not the case. Furthermore, not all the words in a sentence have to par-

ticipate in semantic relations, while there might also be implicit semantic concepts which

play a role in determining the meaning but do not correspond to the surface form of any

words. Figure 1.2 gives an example bilexical semantic graph (more expressive semantic

representations are introduced in Chapter 5). In the example John is a semantic argument

of both the predicates wants and leave.

1.1.2 Generative models

A generative model defines a joint probability distribution p(x,y) over the observed data

y and the output or structure to be predicted x. In contrast discriminative models define a

conditional distribution p(x|y). In this thesis we propose generative syntactic models that

define joint probability distributions over sentences (word sequences) and their dependency

parses. Additionally we propose conditional models for semantic structure that model a

joint distribution over semantic concepts and the relations between them, conditioned on

the input sentence.

There are a number of motivations for focussing on generative models:

• They model the observed data by generating, or assigning probabilities to strings.

Therefore generative models enable us to formulate and test hypotheses about the

underlying structure or processes which generate the data, rather than modelling the

structure in isolation.

• They are probabilistic models that provide estimates for the uncertainty in predic-

tions. While some discriminative models are probabilistic, many are not. This inter-

pretability is crucial for many real-world applications.
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• The structure that we want to predict can be treated as latent variables over which

inference can be performed during training or decoding. This enables us to perform

semi-supervised or unsupervised learning, and to estimate the marginal distribution

over the observed data.

• Locally-normalised discriminative models, where the conditional distribution factors

into the product of the probabilities of the elements in the predicted structure, suffer

from the label bias problem (Lafferty et al., 2001). This refers to the phenomenon

that models can learn to ignore parts of the input that are not required to make locally

good decisions, and that it might be overconfident in local decisions which might not

be globally optimal. Globally normalised discriminative models do not suffer from

this problem, but training is more expensive as inference has to be performed over

the output space during training. Explaining-away effects have also been manifested

in discriminative neural sequence-to-sequence models (Sutskever et al., 2014; Bah-

danau et al., 2015) that often ignore parts of the input sequence by not predicting any

output corresponding to it during decoding.

• It has been shown both theoretically and practically that generative models have

lower sample complexity than discriminative models (Ng and Jordan, 2002; Yo-

gatama et al., 2017): Discriminative models are usually more accurate given suf-

ficient training data, but generative models reach their asymptotic error rates faster,

meaning that when small amounts of training data are available generative models

will often be more accurate than their discriminative counterparts.

One of the limitations of generative models is that they often have to make strong inde-

pendence assumptions in order to make inference tractable. Additionally many probabilis-

tic density estimators in generative models are not sufficiently powerful to model complex

data distributions accurately. Recent advances in neural networks enable us to overcome

these disadvantages. Neural networks have been shown to learn good representations of

input contexts that can capture long-distance dependencies. They can also approximate

arbitrary non-linear functions, which enables them to be good probability estimators. In

computer vision neural networks have been shown to be successful generative models both

quantitatively and qualitatively (Goodfellow et al., 2014; van den Oord et al., 2016).
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1.1.3 Linguistic structure prediction

Two broad areas for the application of NLP models are language generation and language

understanding tasks. In this thesis syntactic structure is used primarily in the context of

language generation, specifically language modelling, while semantic structure is predicted

with the goal of contributing to language understanding tasks. Syntactic structure could still

have a role in language understanding tasks, but as the information required is primarily

semantic, we focus on predicting semantic representations directly. Language generation

can also be performed from semantic structures, but we do not address that task here.

Language modelling Language modelling, the task of estimating probability distribu-

tions over word sequences, is a crucial component of many language generation appli-

cations. Examples include automatic speech recognition, machine translation, text pre-

diction on mobile keyboards, automatic e-mail reply suggestions and dialogue systems.

Further language generation tasks that recently drew attention include image caption gen-

eration (Vinyals et al., 2015c) and recipe generation (Kiddon et al., 2016).

Most language models do not explicitly account for the hierarchical structure of lan-

guage. One reason is that syntactic language models are considerably slower, as they have

to do inference over structure during decoding; another reason is that in practice language

models based on sequential structure can estimate the next word distribution very well

and can be trained on very large corpora. However, syntactic structure has been shown to

improve the intrinsic and extrinsic performance of language models (Chelba and Jelinek,

2000; Emami and Jelinek, 2005). It could be particularly beneficial in languages and do-

mains that are not well enough resourced for learning accurate language models.

Incremental parsing In this thesis incrementally refers to two related concepts: Linear-

time processing, and online prediction (predicting partial output after observing partial

input). In incremental models the output is predicted as a sequence. Incrementality is es-

sential in generative syntactic models, as one of the defining characteristics of a language

model is the ability to predict the distribution over the next word in a sequence given past

words. In a generative incremental parser the goal is to be able to do online processing
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to estimate the distribution over the next word in the sentence by marginalising (approxi-

mately or exactly) over the syntactic structure of the partially observed sentence.

Transition-based dependency parsers (Nivre, 2008) are a class of incremental parsers

that offer an appealing trade-off between speed and accuracy, often matching or exceeding

the accuracy of graph-based parsers that use dynamic programming to perform inference

over the entire search space (McDonald et al., 2005b; Koo et al., 2010; Lei et al., 2014).

Parsing is formulated as executing a sequence of shift-reduce actions on a stack and a buffer.

Decoding is performed either greedily or with beam-search. We shall focus on generative

transition-based models that jointly predict the observed words and dependency parses.

The principles of incrementality can also be applied to semantic graph parsing. Here the

goal is to incrementally predict the nodes and edges of semantic graphs, as exact inference

is intractable unless strong assumptions are made about the class of graph structures to

be predicted and the relation between the input tokens and graph nodes. Transition-based

parsing, generative in the sense that the graph nodes and edges are predicted jointly, is an

appropriate abstract computational system for modelling this task.

1.2 Aims

Two important goals in Natural Language Processing (NLP) are the development of parsers

that can produce linguistic analyses of sentences with high speed and accuracy, and of

models that are able to generate well-formed sentences. We formulate the following aims

in order to advance these goals:

• Develop fast and accurate generative syntactic dependency models for parsing and

language modelling that enable approximate or exact online inference.

• Develop a robust, fast and accurate parser for linguistically-expressive semantic graphs.

Our thesis is that distributed representations (which are learned by neural networks)

and linguistically-motivated structured representations are complementary in models that

form the basis of language generation and understanding applications. More concretely

this thesis is based on the following hypotheses:
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• Neural networks are more accurate than count-based estimators for both language

modelling and parsing.

• Generative syntactic models improve the intrinsic performance of language mod-

elling over purely sequential models for both count-based and neural approaches.

• Neural models can be applied to predict more complex linguistically-motivated struc-

tures than previously feasible with data-driven approaches. In particular they can

predict rich semantic representations without first deriving the syntax.

• Modelling structure in the architecture of neural incremental parsing models im-

proves performance over treating it as a purely sequential prediction problem.

1.3 Contributions

The main contributions made by this thesis are as follows:

• We proposed (with the publication of Buys and Blunsom (2015b) and Buys and Blun-

som (2015a)) the first generative models that can be employed as both accurate de-

pendency parsers and language models.

• We propose an inference algorithm for generative dependency parsing based on par-

ticle filtering that offers a better trade-off between speed and accuracy than previous

approaches.

• We propose a Bayesian model for generative dependency parsing with sophisticated

smoothing over carefully chosen priors over ordered contexts. A fine-grained anal-

ysis of the structure of the conditioning contexts shows that our Bayesian model is

more accurate than discriminative models with access to the same context.

• We show that generative parsers based on feed-forward neural networks are more

accurate than the Bayesian models and competitive with the accuracy of the best

previous generative parser, while being much faster.

• We propose a generative parser based on recurrent neural networks (RNNs) in which

exact inference with dynamic programming is tractable. The RNN enables the model
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to be accurate using a very small feature set based on the representations produced by

the RNN, which enables us to apply a dynamic program to the model. This model is a

more accurate parser than our feed-forward models, but failed to improve perplexity

over an RNN language model.

• We show that it is feasible to perform unsupervised learning of syntactic structure

with the RNN generative model when optimising the language modelling objective

by backpropagating through the dynamic program. The model can learn non-trivial

trees with plausible hierarchical structure.

• We propose the first robust and scalable parser for Minimal Recursion Semantics,

a semantic representation that has previously been predicted only in the context of

grammar-based parsing, which has high precision but incomplete coverage.

• We propose a transition-based neural semantic graph parser that can predict unre-

stricted semantic graphs, while previous approaches have been constrained to spe-

cific formalisms or graph classes. Additionally we show that pointer networks can

be used to predict the spans of the alignments between graph nodes and input tokens.

• We show that a simple, well-tuned model for neural Abstract Meaning Representa-

tion (AMR) parsing outperforms previous neural approaches, while the transition-

based parser together with heuristics to augment the structure of AMR graphs results

in better performance than other approaches using comparable resources.

1.4 Thesis outline

Chapter 2: Background: Language modelling and parsing

We review different classes of language models, which form the basis of the generative

models we develop in the thesis: Bayesian hierarchical Pitman-Yor processes (HPYPs),

feed-forward neural networks and recurrent neural networks. After reviewing syntactic

and semantic representations, we define the transition systems for dependency parsing that

are used in this thesis. Finally we review approaches to syntactic dependency parsing.
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Chapter 3: Markov Models for Generative Dependency Parsing

We propose two models for generative dependency parsing based on models making

Markov assumptions. The first is a Bayesian model, the second a feed-forward neural net-

work. We introduce decoding and inference algorithms based on particle-filtering. The

Bayesian model obtains an unlabelled attachment accuracy of 88.47% while the neural net-

work improves this to 90.16%. While these models are less accurate than state-of-the-art

discriminative parsers they are more accurate than most previous generative parsers and

less sophisticated discriminative models. They are also faster than previous generative

parsers during both training and decoding. For language modelling both generative parsers

outperform their n-gram counterparts. We show that fine-tuning the model trained with

annotated parse trees to optimise the marginal likelihood further improves language mod-

elling quality, giving a test set perplexity of 138.6 for the neural model, compared to 170.1

for the count-based n-gram baseline. A qualitative evaluation shows that the model is able

to generate sentences that display both local and syntactic coherence. This chapter is based

on research published as Buys and Blunsom (2015b) and Buys and Blunsom (2015a).

Chapter 4: Recurrent Models for Generative Dependency Parsing

We introduce an RNN model for generative transition-based parsing. The RNN enables

us to restrict the conditioning contexts so that the model structure enables exact inference

with dynamic programming. Results show that the parser is more accurate than the feed-

forward generative model of Chapter 3, while language modelling performance is com-

petitive with vanilla RNNs. Furthermore we show that the model can learn parse trees

without supervision. The research in chapter has been accepted for publication as Buys

and Blunsom (2018).

Chapter 5: Neural Semantic Graph Parsing

In this chapter we propose a neural encoder-decoder RNN model to parse semantic

graphs. In particular we propose a transition-based model within the encoder-decoder

framework. The model includes an attention mechanism, an architecture that models the

alignment between sentence tokens and graph nodes explicitly, and a stack-based archi-

tecture for the transition system. We report experimental results for parsing two semantic
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representations: Abstract Meaning Representation (AMR) and graphs based on Minimal

Recursion Semantics. Our parser obtains a graph overlap F1 score of 84.2% on parsing

Minimal Recursion Semantics, which is an improvement of 4.5% over an attention-based

baseline. While our model is less accurate than the grammar-based parser on a test set

consisting only of sentences which the grammar is able to parse, it is an order of magni-

tude faster. On AMR parsing we obtain 60.1% F1, which is higher than previous neural

AMR parsers and other parsers using comparable resources. This chapter is based on the

publications Buys and Blunsom (2017a) and Buys and Blunsom (2017b).

Chapter 6: Conclusion

We summarize our results, reflect on the extent to which the aims of this thesis have

been accomplished and discuss the conclusions we can draw from that. We conclude by

discussing directions for future work.
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Chapter 2

Background: Language modelling and
parsing

In this chapter we introduce the probabilistic models and algorithms that form the basis

of the models developed in this thesis. Language modelling refers to a class of models

that estimate probability distributions over words in sentences. We present three mod-

els: A count-based approach which employs Bayesian smoothing to interpolate between

different conditioning contexts to estimate next word probabilities; a feed-forward neural

network that uses a fixed-size context; and a recurrent neural network with unbounded con-

text. These models will form the basis of the generative syntactic models we develop in

Chapters 3 and 4. Next we introduce syntactic representations, in particular dependency

graphs. Transition-based parsing is a class of stack-based algorithms that parse sentences

incrementally to trees or graphs. We present two transition systems for projective syntactic

graphs: arc-standard and arc-eager. We also present an extension to arc-eager for parsing

semantic graphs. Finally we review models for supervised and unsupervised dependency

parsing.

2.1 Language modelling

Let w be a word, a discrete symbol such that w ∈ V , where the vocabulary V is an ordered

set. Words are represented interchangeably by their integer indexes in V . A sentence w1:n

is a sequence of words of length n, where wn is equal to a designated end-of-sentence

symbol, denoted as EOS. We shall let w0 always be equal to a designated start-of-sentence

symbol. The goal of language modelling is to estimate the probability distribution p(w1:n),
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which factorises as a product of multinomials:

p(w1:n) =
n∏
i=1

p(wi|w0:i−1). (2.1)

The first paradigm that we consider (Sections 2.1.1 and 2.1.2) is n-gram language mod-

elling. An n-gram is a sequence of n words. The frequency counts of n-grams in a corpus

are the sufficient statistics for estimating an n-gram model from that corpus, where n ≥ 2.

An n-gram model estimates the word probabilities in Equation 2.1 by making a Markov

assumption: The distribution over the next word in the sentence depends on the n− 1 pre-

ceding words, but is conditionally independent of the rest. The multinomial distribution

over wi is estimated as

p(wi|w1:i−1) ≈ p(wi|wmax(i−n+1,0):i−1). (2.2)

The conditioning context will also be denoted as h, where h ∈ V n−1 if i ≥ n.

2.1.1 Non-parametric Bayesian modelling

The first approach to estimating the distribution in Equation 2.2 is count-based methods.

Language is inherently sparse: Empirically the relation between word types and the fre-

quency of their occurrence in a document follow a power-law distribution. In particular

Zipf’s law (Zipf, 1949) states that the frequency of a word is inversely proportional to its

rank in the frequency table. Therefore direct maximum likelihood estimation is unfeasible

even for small values of n.

Smoothing refers to a number of techniques which address this problem (see Chen

and Goodman (1999) for an overview). Smoothing methods adjust the counts of low-

frequency n-grams, which are unreliable – this is referred to as discounting. They also

employ backoff, using the estimates from smaller values of n when an n-gram is unknown,

or interpolate different orders of n-gram estimates. The best performing and most widely

used smoothing method is interpolated Kneser-Ney smoothing (Kneser and Ney, 1995;

Chen and Goodman, 1999). Count-based models were the state of the art for language

modelling for almost two decades, before being overtaken by recurrent neural networks.

They are widely used in applications such as automatic speech recognition, phrase-based

machine translation and text prediction for mobile keyboards.
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We present a Bayesian language model (Goldwater et al., 2006b; Teh, 2006a) based on

hierarchical Pitman-Yor Processes (HPYPs), of which an approximation recovers interpo-

lated Kneser-Ney smoothing. The advantage of the Bayesian formulation is that inference

(based on Gibbs sampling) extends straightforwardly to semi-supervised or unsupervised

learning; we shall see an application in Chapter 3. HPYPs have been applied to various

unsupervised NLP tasks, including word segmentation (Goldwater et al., 2006a), Parts of

Speech induction (Blunsom and Cohn, 2011) and grammar induction (Blunsom and Cohn,

2010).

The Pitman-Yor process The definitions that follow are based on Teh (2006b) and Teh

(2006a). The Pitman-Yor process (PYP) is a generalisation of the Dirichlet process, which

defines a process generating distributions over a probability space X , with discount param-

eter 0 ≤ d < 1, strength parameter θ > −d and base distribution B. A draw of a posterior

distribution G from a Pitman-Yor process is denoted as G ∼ PYP(d, θ, B).

The Chinese restaurant process (CRP) characterises a sequence of draws x1, . . . , xn

from G with the analogy of a Chinese restaurant: The restaurant has an infinite number

of tables; each has capacity to seat an infinite number of customers. Customers enter the

restaurant one by one, each representing a draw fromG. Let ck be the number of customers

sitting at table k and t the number of occupied tables. When the ith customer enters, he

chooses at which table to sit according to the distribution

p(zi = k|z1:i−1) =

{
ck−d
i−1+θ if 1 ≤ k ≤ t,
td+θ
i−1+θ if k = t+ 1,

(2.3)

where k is the index of the table chosen and z1:i−1 the current seating arrangement. Each

table serves one dish, which is assigned with a draw from the base distribution B when

it receives its first customer. It can be shown that the sequence generated by the Chinese

restaurant process is exchangeable, i.e. the distribution is invariant to the ordering of the

sequence (Pitman, 1995).

In language modelling, we can consider the PYP as a prior for unigram distributions:

Let every dish correspond to a word type, and every customer to a token drawn from the

distribution being constructed. The base distribution B is uniform distribution over the

words in vocabulary. Customers sitting at the same table correspond to tokens of the same
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word type. Suppose that the training corpus has cw occurrences of word w. Given a seating

arrangement z1:i, the next word probability distribution is

p(xi+1 = w|z1:i) =
cw − d
θ + i

+
θ + td

θ + i
B(w). (2.4)

When setting d = 0 the distribution reduces to the Dirichlet distribution, with θ acting

as pseudo-counts. The model has a self-reinforcing property: The more often a word is

drawn, the more likely it is to be drawn again, reflecting the power-law distribution of

words.

Hierarchical Pitman-Yor processes To construct an n-gram model based on a PYP prior,

the model is extended to interpolate between different-sized contexts. The hierarchical

Pitman-Yor process (HPYP) employs the PYP recursively as a prior over models of de-

creasing context size. For conditioning context h1:m−1 the HPYP is defined as

Gh1:m−1 ∼ PYP(dm−1, θm−1, Gh1:m−2)

Gh1:m−2 ∼ PYP(dm−2, θm−2, Gh1:m−3)

. . .

G∅ ∼ PYP(d0, θ0,Uniform), (2.5)

where dk and θk are the discount and strength discount parameters for PYPs with condi-

tioning context length k. Each back-off level drops one context element. The distribution

for an empty context backs off to the uniform distribution over the vocabulary.

The Chinese restaurant analogy extends to the hierarchical PYP. Each restaurant corre-

sponding to Gh is connected to a parent restaurant, corresponding to its base distribution

Gπ(h), where π(h1:m) = h1:m−1. At each table the dish is drawn from the parent restaurant

distribution by sending a customer to it; this is done recursively. In the hierarchy of restau-

rants every customer corresponds to a table at the level above (except for the top level)

and every dish can be traced back to the base distribution B. In language modelling this

means that every restaurant corresponds to a m-gram context and its parent restaurant is

the m− 1-gram context it backs off to.

The prior incorporates the belief that symbols in the context are ordered from most

informative to least informative to the distribution. In an n-gram language model, the
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natural assumption is that the further away a context word is from the predicted word, the

less informative it is. The less certainty the model has about its estimates, the more it will

fall back on the uniform distribution.

Inference Given n-gram training data, the seating arrangement is not deterministic, as

multiple tables can serve the same dish. Inference over seating arrangements is performed

with Gibbs sampling, based on routines to add or to remove a customer from a restaurant,

given the dish that the customer eats. An initial seating arrangement is sampled simply

by sequentially adding each training example to the restaurant corresponding to its con-

text, following the distribution given by the current seating arrangement. For subsequent

iterations, Gibbs sampling is performed on training examples by iteratively removing a cus-

tomer from its restaurant, and adding it back by sampling a table from the new distribution.

The discount and strength parameters are sampled with slice sampling (Neal, 2003).

Blunsom et al. (2009) proposed efficient data structures to make inference practical

without resorting to approximating the seating arrangement. Instead of representing each

table explicitly, a histogram is maintained for each dish wi in a restaurant. The histogram

tracks how many tables with m customers are serving the dish, for all m > 0. The property

of exchangeability makes it unnecessary to know at exactly which table each customer is

sitting. When a customer is added, it is first decided whether they should join an existing

table or start a new one. If the customer joins an existing table, the table number is sampled

from the histogram and the histogram is updated. To remove a customer, the table from

which to remove him is again sampled from the histogram distribution.

Interpolated Kneser-Ney smoothing can be recovered as a deterministic approximate

inference procedure for the Bayesian model. All strength parameters θ|h| are set to 0, and

the seating arrangement is made deterministic by assuming that each dish in each restaurant

is served by only one table.

2.1.2 Feed-forward neural networks

An alternative approach to parameterising n-gram models to overcome sparsity is to use

feed-forward neural networks (Bengio et al., 2003; Mnih and Hinton, 2007), based on the

distributed representation of words as real-valued vectors.
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Suppose we want to estimate p(w|h), where h ∈ V m−1 as before. Each word hj in

the context is embedded as a vector xj ∈ Rd through a column lookup in embedding ma-

trix E ∈ Rd×|V |. Additional features over words can be incorporated through additive

representations (Botha and Blunsom, 2014), using vector representations of the same di-

mension as the word embeddings. Example features include POS tags and morphological

features. Suppose context feature f has an input representation x(f) ∈ RD. The composite

representation is computed as x =
∑

f∈µ(w) x
(f), where µ(w) are the word features.

In a language model and other generative models all features have to be generated by

the model (assigned probability) before they can be conditioned on. For example, to use

POS tags as features, the model has to estimate the joint distribution over words and POS

tags.

The projection layer is defined as

φ(h) = σ(
m−1∑
j=1

W (j)xj), (2.6)

where W (j) ∈ RD×D are transformation matrices defined for each position in the n-gram

context, and σ is an element-wise function. If the transformation matrices are square they

can be approximated to be diagonal to reduce the number of model parameters. If σ is

the identity function, the network is a log bilinear model. For neural networks, σ is a

non-linearity such as the sigmoid logistic function, tanh or a rectifier.

This projection layer is then mapped to an output vector (called a logit)

v = Rφ(h) + b, (2.7)

where R ∈ R|V |×D is a matrix containing the output embeddings of each word and b is a

bias vector.

The probability distribution is then estimated as

p(w = i|h) =
exp(vi)∑|V |
j=1 exp(vj)

. (2.8)

The function applied to v in Equation 2.8 is known as the softmax function and can be

denoted as softmaxi(v).

Neural networks can be contrasted with traditional log-linear models, also known as

maximum entropy models (Berger et al., 1996), where φ maps h to a high-dimensional
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vector space, typically with indicator functions, leading to a sparse vector. In log-linear

models features are hand-designed, and include combinations of elementary features, while

a neural network can learn arbitrary feature combinations. Log-linear models have been

used in a wide range of NLP tasks, including part-of-speech tagging (Ratnaparkhi, 1996),

language modelling (Rosenfeld, 1996) and named entity recognition (Borthwick, 1999).

However, recently neural networks have obtained superior performance on most of these

tasks.

Vocabulary factorisation One challenge with neural language models is the computa-

tional cost of computing the softmax over the entire vocabulary, during training and testing.

An effective way to reduce this problem is class-based factorisation (Goodman, 2001; Bal-

tescu and Blunsom, 2015). We use Brown clustering (Brown et al., 1992), an agglomerative

clustering method that has proved to be very successful at clustering syntactically and se-

mantically similar words, to cluster the vocabulary into approximately
√
|V | classes. This

formulation reduces the number of items in the softmax denominator, reducing the output

layer time complexity from O(|V |) to O(
√
|V |).

Let C be the set of classes and Γ(c) be the set of words in class c ∈ C. The word

probability factors as

P (w|φ(h)) = P (c|φ(h))P (w|c, φ(h)), (2.9)

where c is the (unique) class of word w.

The class prediction logit is defined as

u = Sφ(h) + d, (2.10)

where S ∈ RD×|C| is the class embedding matrix and d a bias vector.

The word prediction logit for Γ(c) is

vc = R(c)φ(h) + b(c), (2.11)

where R(c) is the embedding matrix of words in class Γ(c).

The probabilities are then

p(c|φ(h)) = softmaxc(u), (2.12)

p(w|c, φ(h)) = softmaxw(vc). (2.13)
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Training Neural language models are trained by minimising the negative log likelihood,

− log p(w1:n) = −
n∑
i=1

log p(wi|hi), (2.14)

over all the sentences in the training corpus. To minimise this objective a gradient-based

optimisation algorithm is used. Due to the size of the parameter vectors second-order op-

timisation methods cannot be used, so we use (first-order) gradient descent. The gradients

are computed at each layer as a function of the gradients and values at other layers. This ap-

proach to recursively computing gradients and updating parameters with gradients descent

is referred to as backpropagation (Rumelhart et al., 1986). To train feed-forward networks

we use mini-batch stochastic gradient descent (SGD) (Bottou, 1998) with AdaGrad (Duchi

et al., 2011) and L2 regularisation.

2.1.3 Recurrent neural networks

While feed-forward neural networks are more powerful than count-based approaches, they

still only make use of a fixed-sized context at each time step, restricting their ability to

capture long-range dependencies.

Recurrent neural networks (RNNs) (Jordan, 1986; Elman, 1990) overcome this limita-

tion. RNNs have been shown to obtain better intrinsic language modelling performance

than feed-forward models (Mikolov et al., 2010; Jozefowicz et al., 2015, 2016).

In an RNN the hidden state at each time step depends on the previous hidden state, so

the hidden state vector hi represents the entire context from positions 1 to i. Suppose that

the word embedding of wi is xi as before. The hidden state is computed as

hi = RNN(xi,hi−1), (2.15)

where RNN is a function mapping the input vector and previous hidden state to the new

hidden state. Together the hidden state and recurrent function are also referred to as a cell.

There are multiple definitions of the recurrent function. A simple RNN cell (Elman,

1990) is defined as

hi = σ(W (hx)xi + W (hh)hi−1 + b(h)). (2.16)

Simple RNNs can suffer from vanishing or exploding gradient problems when trained

with backpropagation (Bengio et al., 1994). Gradients are propagated from every time step
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back to the start of the sequence, and by expanding the chain rule the gradient becomes

a product of the gradient with respect to each time step, which can become vanishingly

small (or very large). A related problem is that RNN’s ability to model long-distance

dependencies in practice is limited. Solutions include using gates to control how much

information is propagated between steps, and augmenting the RNN cell with a memory

vector that can capture long-distance features.

The most widely-used RNN architecture following these suggestions is called Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997). LSTMs use a number

of gates, including an input, output and forget gate, which controls how much weight to

assign to the current input and how much to the representation of previous inputs. The

standard LSTM cell is defined as

ii = σ(W (ih)hi−1 + W (ix)xi + bi) (2.17)

fi = σ(W (fh)hi−1 + W (fx)xi + bf ) (2.18)

oi = σ(W (oh)hi−1 + W (ox)xi + bo) (2.19)

zi = tanh(W (zh)hi−1 + W (zx)xi + bz) (2.20)

ci = fi ◦ ci−1 + ii ◦ zi (2.21)

hi = oi ◦ tanh(ci), (2.22)

where ii, fi and oi are the input, forget and output gates respectively, ci is the memory cell

and ◦ represents element-wise multiplication.

The RNN language model is constructed by adding an output layer over the hidden

state at each time step, followed by a softmax:

vi = W (vh)hi + bv (2.23)

p(wi+1 = w|w0:i) = softmaxw(vi) (2.24)

The RNN is trained with SGD, similar to feed-forward networks.

2.2 Syntactic and semantic representations

In this thesis we focus on dependency-based representations of syntactic and semantic

structure. Dependency graphs represent the structure of sentences through arcs between

words, usually labelled with relations.
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2.2.1 Dependency graphs

A dependency graph (Nivre, 2008) is a directed graphG = (N,A), whereN = {0, . . . , n−

1} is a set of nodes, A ⊆ N × L × N is a set of labelled directed arcs, and L a set of

dependency labels. For syntactic dependency graphs there is a one-to-one relation between

nodes 1 to n − 1 and the words in sentence w1:n−1. A node corresponding to the end-of-

sentence symbol wn may be predicted by a parser, but does not form part of the graph.

Each arc, denoted as (i, l, j) ∈ A, encodes a dependency between two nodes, where i

is the head, j the dependent and l is the dependency type of j. An arc can also be written

as i l→ j. Node 0 is the designated root node, i.e. there is no node i and a label l such

that (i, l, 0) ∈ A. Syntactic parses are trees: the graph is acyclic, connected and every node

has at most one head, i.e. if (i, l, j) ∈ A then there is no node i′ and label l′ such that

(i′, l′, j) ∈ A and i 6= i′ or l 6= l′. Semantic graphs do not have to obey these constraints.

A dependency graph G is projective if and only if, for each arc (i, l, j) ∈ A and node

k ∈ N , where i < k < j or j < k < i, there is a subset of arcs {(i, l1, i1), . . . , (im−1, lm, im)}

in A such that im = k. A projective dependency graph can be drawn on a plane such that

there will be no crossing arcs, as in Figures 2.1 and 2.2.

2.2.2 Dependency representations

We next discuss the syntactic dependency representations we will use. Annotated depen-

dency treebanks can be obtained either by direct manual annotation or by automatically

converting constituency parses or other dependency parses through hand-crafted rules, op-

tionally followed by manual verification. The treebanks for the English syntactic depen-

dency representations we use in this thesis were obtained through rule-based conversion.

In many other languages, especially those with somewhat free word order (e.g. Czech)

dependency syntax is a more natural representation than constituency structure, as the syn-

tax is less dependent on the word order; consequently dependency treebanks have been

developed for these languages directly.

The first representation that we introduce is based on the head-finding rules of Yamada

and Matsumoto (2003). We refer to this representation as YM. The conversion is per-

formed with the Penn2Malt converter.1 YM has 12 dependency labels. An example YM
1http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
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ROOT Ms Waleson is a free-lance writer based in New York .
ROOT NNP NNP VBZ DT JJ NN VBN IN NNP NNP .

NAME VMOD

ROOT

NMOD

NMOD

VMOD

APPO VMOD NAME

PMOD

P

Figure 2.1: A YM dependency tree. The words and POS tags of the sentence are given.
Arcs indicate head→ modifier dependencies, and are labelled with dependency relations.

ROOT Ms Waleson is a free-lance writer based in New York .
ROOT NNP NNP VBZ DT JJ NN VBN IN NNP NNP .

nn

nsubj

cop

det

amod

root

partmod prep nn

pobj

punct

Figure 2.2: A Stanford dependency tree.

dependency tree is given in Figure 2.1.

The CoNLL syntactic dependency representation (CD) (Johansson and Nugues, 2007)2

is a more sophisticated representation following the same principles as YM. However it

has not been used widely for reporting parsing results, and contains some semantically-

motivated non-projective dependencies, while we focus on projective syntactic dependen-

cies.

The other dependency conversion that we shall use is the Stanford dependency repre-

sentation (SD) (De Marneffe and Manning, 2008). This representation is obtained through

version 3.3.0 of the Stanford parser.3 The Stanford dependencies have a richer dependency

label set than YM, with 45 labels; the converter uses more elaborate hand-crafted rules

based on linguistic knowledge, compared to Penn2Malt. An SD dependency tree is given

in Figure 2.2.

2Implemented in the LTH converter: http://nlp.cs.lth.se/software/treebank converter/
3http://nlp.stanford.edu/software/lex-parser.shtml
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There are a number of other differences between the representations: The Stanford

representation prefers to let content words between which a relation exists modify each

other directly, while YM is more motivated by traditional syntactic considerations. Copula

verbs (including forms of to be) are treated as the head of the clause in YM (see Figure 2.1)

while SD treats the complement (writer in the example) as the head of the sentence.4 YM

chooses the auxiliary verb to be the head of the main lexical verb in a clause, while SD lets

the main verb be the head.

The first effort to collect standardized dependency treebanks was carried out in the con-

text of the CoNLL 2006 and 2007 shared tasks (Buchholz and Marsi, 2006; Nivre et al.,

2007). The more recent Universal Dependencies (UD) project has the goal of harmonizing

dependency annotations across languages to enable cross-lingual comparison and trans-

fer (Nivre et al., 2016). The most notable design decision of UD is that it goes even further

than SD in giving preference to dependencies between content words: A preposition mod-

ifies the main noun in a prepositional phrase, rather than acting as its head. This enables

harmonization with languages where the syntactic equivalent of function words in English

is expressed through morphology rather than separate words.

There are also semantic dependency formalisms. A number of such representations for

English, derived from more linguistically expressive representations, have been released

with the SemEval shared task on semantic dependency parsing (Oepen et al., 2014, 2015).

We shall introduce linguistically expressive semantic representations in Chapter 5.

2.2.3 Constituency syntax

In order to understand the linguistic and algorithmic motivations behind dependency pars-

ing, we place it in the context of constituency parsing.

Chomsky (Chomsky, 1957) proposed the use of constituency (phrase structure) parse

trees to describe the syntactic structure of English sentences. A number of syntactic the-

ories based on constituency structure were subsequently developed, including transforma-

tional grammar (Chomsky, 1965), Government and Binding theory (Chomsky, 1981) and

Head-driven Phrase Structure Grammar (Pollard and Sag, 1994).

4There is also a version of SD which selects copula verbs as heads.
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S

.

.

VP

NP

VP

PP

NP

NNP

York

NNP

New

IN

in

VBN

based

NP

NN

writer

JJ

free-lance

DT

a

VBZ

is

NP

NNP

Waleson

NNP

Ms

Figure 2.3: A constituency parse tree. The words of the sentence are at the leaves of the
tree. The pre-terminal nodes are POS tags and the other nodes label constituency phrases
in the sentence.

To facilitate syntactic modelling in computational linguistics treebanks, datasets of syn-

tactically annotated sentences were developed. In English, the most commonly used one

is the Wall Street Journal (WSJ) section of the Penn treebank (PTB) (Marcus et al., 1993),

consisting of approximately 1 million words of newspaper text. An example constituency

parse tree is given in Figure 2.3. The words of the sentence are the terminal (leaf) nodes

of the tree, while non-terminal nodes each span a constituent phrase. The pre-terminals

(parent nodes of the terminals) are parts-of-speech (POS) tags. The PTB also contains

additional information which is usually omitted for parsing: Function tags are optional

labels of non-terminals that represent grammatical functions of phrases, such as subject,

predicate, or adverbial functions such as direction, extend and manner. Null elements are

terminals which are not words but represent additional grammatical structure (according

to the underlying linguistic theory), such as the movement of words out of their canonical

positions.

Constituency trees can be generated by context-free grammars (CFGs) (Chomsky, 1959).

Context-free grammars can be parsed by cubic time algorithms, of which the most widely

used is the CKY algorithm, a bottom-up parsing algorithm based on dynamic program-

ming. Probabilistic CFGs are top-down generative models of constituency trees. However,
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simply reading a context-free grammar off parse trees and taking maximum likelihood es-

timates of rule weights does not lead to accurate parsing, due to the strong independence

assumptions that this model makes.

Grammar-based constituency parsers are based on either lexicalisation (Collins, 1997;

Bikel, 2004; Charniak and Johnson, 2005) – annotating phrase labels with their head words,

or refinement of non-terminal labels without lexicalisation (Klein and Manning, 2003;

Petrov et al., 2006). Both of these approaches have to deal with computational complexity,

controlling the size of the grammar, and sparsity in estimating rule probabilities.

Discriminative constituency parsers score candidate phrases conditioned on the words

in the sentence being observed. Models can be trained either with a max-margin objec-

tive (Taskar et al., 2004), or as conditional random fields (globally-normalised log linear

models) (Petrov and Klein, 2007). However, training discriminative models is more expen-

sive, as they have to perform inference over trees during training.

There are a number of motivations for focussing on dependency rather than constituency

parsing.

• Dependencies are linguistically plausible in all languages, while constituency pars-

ing, by making implicit assumptions about the relation between word order and syn-

tactic structure, might not be.

• Developing dependency annotations in a new language is simpler than for constituency

structure, which is typically linked to the development of a grammar or a specific lin-

guistic framework for that language.

• Dependency parsers are usually faster than constituency parsers. This is especially

due to the absence of a large grammar constant in dependency parsing, which domi-

nates constituency parsing cost.

Note that we do not claim that dependency parsing has full linguistic expressivity –

there are clearly some intricate constructions that can be expressed better with more lin-

guistically expressive grammars. In the realm of semantics we’ll turn to more expressive

representations. However, for syntactic parsing dependencies offer a better trade-off be-

tween expressivity, usability and scalability than constituency for most applications and

languages.
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2.3 Transition systems for dependency parsing

Next we present standard algorithms for transition-based dependency parsing (Nivre, 2008).

These algorithms are related to shift-reduce parsing for context-free grammars, originally

developed in the context of compiler theory (Knuth, 1965; Aho et al., 1986).

A transition system is a tuple S = (C, T, ci, Ct), where C is a set of configurations, T

is a finite set of transitions, each of which is a partial function t : C → C, ci is the initial

configuration, and Ct ⊆ C is a set of terminal configurations (Nivre, 2008).

A configuration is a tuple c = (σ, β,A), where the stack σ is a list of nodes from the set

of nodes N , the buffer β a single node not in σ, and A a set of arcs. Nodes are represented

by their indexes. The top stack element is referred to as σ1, and subsequent elements as

σ2, σ3, . . . , σ|σ|. By convention the stack is written with its topmost element to the right.

Concatenation is indicated by a vertical bar: σ|j indicates that j is the top of the stack.

The initial configuration ci is ([0], 1, ∅). The set of terminal configurations Ct consists

of all configurations of the form ([0], n, A), where A is a set of arcs and wn is the end-

of-sentence symbol. Given a sentence w, a parser based on transition system S processes

w from left to right. At each step it applies a transition, until it reaches a terminal con-

figuration. A sequence of configurations γ = c0, . . . , cm is complete when c0 = ci and

cm ∈ Ct. The dependency graph defined by A in the terminal configuration is returned as

the parse of w. Note that in general a parse may have multiple derivations, i.e., multiple

transition sequences may result in the same parse. This is referred to as spurious ambigu-

ity. A transition system can also be used as a generative model, where the transition actions

also generate the set of nodes.

An oracle for a transition system S is a function o(c,G) that maps the current config-

uration c and the gold parse G to the next transition that should be performed. Given an

oracle for a sentence w we can deterministically parse the sentence by applying the oracle

transition to the configuration at each time step, starting at the initial configuration, until a

final configuration is reached. The oracle is used to train the model by finding transition

sequences that generate its gold parse.
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2.3.1 Arc-standard

The arc-standard transition system (Nivre and Scholz, 2004) has 3 transition types: shift

(sh), left-arc (lal) and right-arc (ral), where l is a dependency label. For labeled parsing

there are 2|L|+ 1 transitions. The transitions are defined as follows:

(sh) (σ, i, A) ` (σ|i, i+ 1, A)

(lal) (σ|i|j, β, A) ` (σ|j, β, A ∪ {(j, l, i)})

(ral) (σ|i|j, β, A) ` (σ|i, β, A ∪ {(i, l, j)})

The left-arc transition has a precondition i 6= 0 to ensure that node 0 is at the root of

the tree. The left-arc and right-arc transitions remove the dependent of the added arc from

the stack. Therefore arc-standard is a bottom-up parser, i.e. once a node is attached to its

head, no further dependents can be added to the node.

Algorithm 1 Arc-standard oracle.
1: Given (σ, β,A), G
2: if |σ| < 2 then
3: return sh
4: else
5: j ← σ1
6: i← σ2
7: if (j, l, i) ∈ G ∧ ¬∃k∃l′[(i, l′, k) ∈ G ∧ ¬(i, l′, k) ∈ A] then
8: return lal
9: else if (i, l, j) ∈ G ∧ ¬∃k∃l′[(j, l′, k) ∈ G ∧ ¬(j, l′, k) ∈ A] then

10: return ral
11: else if β < n then
12: return sh
13: else
14: return No valid action.
15: end if
16: end if

We define an oracle for arc-standard parsing, which is a function of the current config-

uration and the gold tree G (see Algorithm 1). The oracle enforces the bottom-up property

so that a (valid) arc is not added before the dependent has been attached to all its children.

The transition system’s spurious ambiguity can be characterised as follows: If there exists

a valid arc between σ2 and σ1 and the oracle decides to shift, the same pair will only occur
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on top of the stack again after a right dependent has been attached to σ1. Therefore the

oracle has to add right arcs greedily if they are valid, while a valid left arc may be delayed

if σ1 has unattached right dependents in G. Our oracle follows standard practice and adds

arcs as soon as they are valid.

We shall also experiment with a non-deterministic oracle which gives a set of valid

actions instead of just one. In contrast to dynamic oracles (Goldberg and Nivre, 2013) that

perform training with exploration, we are only interested in characterising the derivations

of the correct parse tree, so the non-deterministic oracle can assume that for the given

configuration there exists a derivation of the gold tree G.

As an example of arc-standard parsing we give the oracle derivation of the parse in

Figure 2.1 in Figures 2.4 and 2.5. The example shows the transition system as a generative

model, where shift generates the node shifted onto the stack.

2.3.2 Arc-eager

The arc-eager transition system (Nivre, 2003) has 4 transition types: shift (sh), left-arc (lal),

right-arc (ral), and reduce (re). They are defined as follows:

(sh) (σ, i, A) ` (σ|i, i+ 1, A)

(lal) (σ|i, j, A) ` (σ, j, A ∪ {(j, l, i)})

(ral) (σ|i, j, A) ` (σ|i|j, j + 1, A ∪ {(i, l, j)})

(re) (σ|i, β, A) ` (σ, β,A)

The left-arc and reduce actions are mutually exclusive. The precondition for left-arc

is that the stack top does not already have a head. For reduce the precondition is that it

already has a head. Both are invalid if the stack top is the root.

Left arcs are added bottom-up and right arcs top-down. The strategy is called eager

because any pair of words will appear together at the top of the stack and on the buffer

only once during a valid derivation. Therefore if an arc exists between the two, it must be

added eagerly (in contrast to arc-standard, where the decision may have to be postponed

in order to parse bottom-up). However, a parse may still have multiple derivations, due to
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Transition Configuration

Initialize
ROOT

Shift
ROOT Ms

Shift
ROOT Ms Waleson

Left-arc
ROOT Ms Waleson

NAME

Shift
ROOT Ms Waleson is

NAME

Left-arc
ROOT Ms Waleson is

NAME VMOD

Shift
ROOT Ms Waleson is a

NAME VMOD

Shift
ROOT Ms Waleson is a free-lance

NAME VMOD

Shift
ROOT Ms Waleson is a free-lance writer

NAME VMOD

Left-arc
ROOT Ms Waleson is a free-lance writer

NAME VMOD
NMOD

Left-arc
ROOT Ms Waleson is a free-lance writer

NAME VMOD
NMOD

NMOD

Shift
ROOT Ms Waleson is a free-lance writer based

NAME VMOD
NMOD

NMOD

Shift
ROOT Ms Waleson is a free-lance writer based in

NAME VMOD
NMOD

NMOD

Shift
ROOT Ms Waleson is a free-lance writer based in New

NAME VMOD
NMOD

NMOD

Figure 2.4: Arc-standard parsing derivation. At each step the transition taken and the
words and arcs generated up to that step are shown. The stack consists of words in bold.
The bottom-to-top order of nodes of the stack corresponds to the left-to-right word order.
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Transition Configuration

Shift
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD
NMOD

NMOD

Left-arc
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD
NMOD

NMOD

NAME

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD
NMOD

NMOD

NAME
PMOD

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD
NMOD

NMOD

NAME
PMOD

VMOD

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD
NMOD

NMOD

NAME
PMOD

VMODAPPO

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD
NMOD

NMOD

NAME
PMOD

VMODAPPO

VMOD

Shift
ROOT Ms Waleson is a free-lance writer based in New York .

NAME VMOD
NMOD

NMOD

NAME
PMOD

VMODAPPO

VMOD

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York .

NAME VMOD
NMOD

NMOD

NAME
PMOD

VMODAPPO

VMOD

P

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York .

NAME VMOD
NMOD

NMOD

NAME
PMOD

VMODAPPO

VMOD

P

ROOT

Figure 2.5: Arc-standard parsing derivation (continued).
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ambiguity in performing shift or reduce in some cases where the top stack node already has

a head and has been attached to all its dependents in the gold parse.

Again there is spurious ambiguity in the arc-eager model. In this case, the ambiguity

lies in whether nodes on the stack should be reduced as soon as they have received all

their dependents (early reduce), or if they should be kept until a reduce is necessary in

order to add an arc between β and a node further down the stack (late reduce). Our oracle

(Algorithm 2) performs early reduce. Discriminative oracles for arc-eager parsing typically

use late reduce (Goldberg and Nivre, 2012).

As an example of arc-eager parsing we give the oracle derivation of the parse in Fig-

ure 2.1 in Figures 2.6 and 2.7. The example again shows the transition system as a genera-

tive model, where shift generates the node shifted onto the stack.

Algorithm 2 Arc-eager oracle.
1: Given (σ, β,A), G
2: i← σ1
3: j ← β
4: if (j, l, i) ∈ G then
5: return lal
6: else if (i, l, j) ∈ G then
7: return ral
8: else if ∃k∃l[(k, l, i) ∈ A] ∧ ¬∃k∃l′[(i, l′, k) ∈ G ∧ ¬(i, l′, k) ∈ A] then
9: return re

10: else if j < n then
11: return sh
12: else
13: return No valid action.
14: end if

Transition system for dependency graph parsing A variant of the arc-eager transition

system has been proposed to predict graphs (Sagae and Tsujii, 2008; Titov et al., 2009;

Gómez-Rodrı́guez and Nivre, 2010). The notion of projectivity for trees is extended to

planar graphs: Planar graphs also have no crossing edges when drawn above the nodes on

a plane, but no restrictions are placed on the number of heads of any node.

The transition system for planar graphs uses the same set of transitions as projective

graphs. However, left-arc and right-arc are redefined so that they do not perform shift or
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Transition Configuration

Initialize
ROOT

Shift
ROOT Ms

Left-arc
ROOT Ms

NAME

Shift
ROOT Ms Waleson

NAME

Left-arc
ROOT Ms Waleson

NAME VMOD

Right-arc
ROOT Ms Waleson is

NAME VMOD

ROOT

Shift
ROOT Ms Waleson is a

NAME VMOD

ROOT

Shift
ROOT Ms Waleson is a free-lance

NAME VMOD

ROOT

Left-arc
ROOT Ms Waleson is a free-lance

NAME VMOD

ROOT

NMOD

Left-arc
ROOT Ms Waleson is a free-lance

NAME VMOD

ROOT

NMOD

NMOD

Right-arc
ROOT Ms Waleson is a free-lance writer

NAME VMOD

ROOT

NMOD

NMOD
VMOD

Right-arc
ROOT Ms Waleson is a free-lance writer based

NAME VMOD

ROOT

NMOD

NMOD
VMOD

APPO

Right-arc
ROOT Ms Waleson is a free-lance writer based in

NAME VMOD

ROOT

NMOD

NMOD
VMOD

APPO VMOD

Figure 2.6: Arc-eager parsing derivation. At each step the transition taken and the words
and arcs generated up to that step are shown. The stack consists of words in bold.
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Transition Configuration

Shift
ROOT Ms Waleson is a free-lance writer based in New

NAME VMOD

ROOT

NMOD

NMOD
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APPO VMOD

Left-arc
ROOT Ms Waleson is a free-lance writer based in New

NAME VMOD

ROOT

NMOD

NMOD
VMOD

APPO VMOD NAME

Right-arc
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD

ROOT

NMOD

NMOD
VMOD

APPO VMOD NAME
PMOD

Reduce
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD

ROOT

NMOD

NMOD
VMOD

APPO VMOD NAME
PMOD

Reduce
ROOT Ms Waleson is a free-lance writer based in New York

NAME VMOD

ROOT

NMOD

NMOD
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APPO VMOD NAME
PMOD

Reduce
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Reduce
ROOT Ms Waleson is a free-lance writer based in New York .

NAME VMOD

ROOT

NMOD

NMOD
VMOD
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PMOD

P

Reduce
ROOT Ms Waleson is a free-lance writer based in New York .

NAME VMOD
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VMOD

APPO VMOD NAME
PMOD

P

Figure 2.7: Arc-eager parsing derivation (continued).
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reduce, but only add arcs. Furthermore, the preconditions are changed so that an arc can

always be added as long as there isn’t already an arc between the buffer and stack top. If

the graph does not have to be connected, the pre-condition on reduce (that the stack top has

to be headed) is dropped. The same oracle as for arc-eager parsing (Algorithm 2) can be

applied to planar graphs (Gómez-Rodrı́guez and Nivre, 2010).

There have been a number of proposals for parsing particular classes of non-planar

graphs. Titov et al. (2009) extend the transition system to add a swap action that swaps

the two words on top of the stack. This has good, but incomplete coverage for non-planar

semantic graphs. Gómez-Rodrı́guez and Nivre (2010) add a second stack to the transition

system to parse 2-planar graphs, the class of non-planar graphs which can be decomposed

into two planar graphs.

2.4 Syntactic dependency models

Supervised dependency parsers fall into two classes: Graph-based (scoring graph frag-

ments) and transition-based (scoring transition actions). We also review unsupervised pars-

ing and syntactic language modelling.

2.4.1 Graph-based parsing

Eisner (1996) proposed a generative graph-based dependency parser with aO(n3) dynamic

programming-based parsing algorithm. The model generates dependency trees top-down,

estimating the probability of dependents given their head and (where available) the pre-

viously generated adjacent sibling in the same direction. Backoff and smoothing are per-

formed to reduce sparsity in the conditioning context of the distributions. Wallach et al.

(2008) proposed a Bayesian HPYP parameterisation of this model, which increased perfor-

mance, although it still underperforms comparable discriminative models.

The dynamic program in Eisner’s algorithm is based on an arc-factored model for pro-

jective dependency trees: The score of the tree is the sum of the scores assigned indepen-

dently to each head-dependent pair (corresponding to an arc). McDonald et al. (2005b)

proposed a discriminative arc-factored model trained with MIRA, an online large-margin

method for structured classification. Features are based on the word and POS tags of the
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head and dependent, as well as adjacent words in the sentence. For non-projective pars-

ing the maximum spanning-tree (MST) algorithm can find the highest-scoring parse in

O(n2) (McDonald et al., 2005a).

Graph-based models perform better if larger tree fragments are scored (as opposed to

arc-factored models). Models for second-order (Mcdonald and Pereira, 2006; Carreras,

2007) and third-order parsing (Koo and Collins, 2010; Martins et al., 2013) have been pro-

posed. However, non-projective parsing is NP hard for higher-order models (McDonald

and Satta, 2007). Approximate inference methods have been proposed based on Integer

Linear Programming (Martins et al., 2009) and dual decomposition (Koo et al., 2010; Mar-

tins et al., 2013). These methods are usually slow, but optimised implementations provide

speed and accuracy comparable to transition-based parsers (Martins et al., 2013).

Recently it has been shown that arc-factored graph-based models based on bidirectional

RNNs which encode each word in its sequential context can perform competitively (Kiper-

wasser and Goldberg, 2016), and reach state-of-the-art performance with better optimisa-

tion and hyperparameters (Dozat and Manning, 2017).

An alternative to directly scoring dependency graphs is to perform constituency pars-

ing and transform the result to dependency parses with the rule-based converter used to

obtain the dependencies in the first place. For English this still gives the most accurate re-

sults (Choe and Charniak, 2016; Kuncoro et al., 2017). However this approach is only pos-

sible in a limited number of languages, and is slower than direct dependency parsing (Kong

and Smith, 2014).

2.4.2 Transition-based parsing

Most transition-based dependency parsers are based on discriminative classifiers. Early

models trained local classifiers using k-nearest neighbour classification (Nivre and Scholz,

2004), support vector machines (SVMs) (Yamada and Matsumoto, 2003; Hall et al., 2006)

or maximum-entropy or perceptron models. Further research focussed on feature engineer-

ing, developing feature templates resulting in millions of sparse features (Zhang and Nivre,

2011). Features are usually combinations of the words and POS tags of nodes on the stack

and the buffer, as well as their parents, children and grandchildren.
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While early models were based on greedy decoding, beam-search improves perfor-

mance when the model is trained with a structured perceptron algorithm which performs

beam-search during training (Collins and Roark, 2004; Zhang and Clark, 2008). In this

way the model can learn to score non-optimal hypotheses that enter the beam. These mod-

els are normalised globally, instead of locally. Beam-search approximates searching for the

optimal tree, so the structured perceptron can be seen as approximating a perceptron update

against the optimal tree according to the model by performing early updating: As soon as

the gold parse falls off the beam, an update is performed. A number of variants on how to

perform perceptron updates have been proposed (Huang et al., 2012).

Locally normalised models suffer from the label bias problem (Lafferty et al., 2001).

This limits their ability to revise earlier decisions (Andor et al., 2016), which explains why

beam-search over locally normalised models results in only limited improvements. Locally

normalised models with finite look-ahead can make limited inferences based on future

information which might affect the current decision, while globally normalised models can

learn to have lower confidence in its current decision.

An alternative approach to learn better greedy models is through dynamic and non-

deterministic oracles (Goldberg and Nivre, 2012, 2013). This approach involves training

with exploration - simulating the parser by making incorrect decisions during training and

then learning to find the best possible action sequence after mistakes have been made. For

some transition systems the optimal set of transition actions after an arbitrary sequence of

transitions has been executed can be characterised exactly by non-deterministic oracles.

Training the model with a non-deterministic, instead of a static oracle, in combination with

exploration, has been shown to improve performance.

Finally, incremental parsing with inference based on particle filtering has been proposed

as a model for human online sentence processing (Levy et al., 2009).

Neural network parsers Henderson (2003a,b, 2004) proposed a neural network approach

to incremental left-corner constituency parsing using simple synchrony networks, a form of

recurrent neural network that has additional connections to previous recurrent states based

on the configuration of the incremental parser at each time step. The generative version of

this model is more accurate than the discriminative one.
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Titov and Henderson (2007) introduced a generative latent variable model for arc-eager

transition-based parsing. This model is based on incremental sigmoid belief networks,

which can be seen as neural networks where the hidden units are latent binary variables.

Exact inference is intractable, so recurrent neural networks and variational mean field meth-

ods are proposed to perform approximate inference. The network architecture is similar to

that of Henderson’s constituency parsers. Training and decoding is very slow, and the

model is less accurate than state-of-the-art discriminative dependency parsers.5

Chen and Manning (2014) proposed a greedy, locally-normalised feed-forward neu-

ral network based on distributed word representations. Weiss et al. (2015) showed that

with careful hyperparameter optimisation performance of this approach can be improved

to reach state-of-the-art performance. Furthermore Weiss et al. (2015) and Andor et al.

(2016) showed that globally normalised training with a neural structured perceptron fur-

ther improves performance. Dyer et al. (2015) proposed a stack LSTM which encodes the

entire transition system stack with an RNN – the subtrees rooted at each node on the stack

are encoded recursively. This model obtains high accuracy with greedy decoding.

2.4.3 Unsupervised parsing

The goal of unsupervised parsing, also known as grammar induction, is to learn parse trees

directly from sentences, without annotations. Most models for unsupervised parsing are

generative, although methods based on search-based structured prediction have also been

proposed (Daumé III, 2009).

The first model to learn more accurate trees than an uninformative right-branching base-

line was the dependency model with valence (DMV) (Klein and Manning, 2004). In this

model the tree structure is generated top-down, similar to Eisner (1996), but with a simpler

conditioning context that includes the valency of the head node – whether any dependents

have already been generated. Crucially, parameters are initialised with the harmonic ini-

tialiser, where the probability of a word-dependent pair is inversely proportional to the

distance between the words. The model is trained with expectation maximisation (EM). A

number of extensions to this model use better priors and improved initialisation: Structural

5While the model would be more efficient if re-implemented on recent hardware and software, its neural
network architecture is still very complex.
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annealing starts with a strong preference for short dependencies and gradually relaxes that

preference over time (Smith and Eisner, 2006). Gradually increasing the length of sen-

tences used for training has a similar effect (Spitkovsky et al., 2010a). Viterbi EM training

improves performance for longer sentences, when a good distribution for short sentences

has already been found (Spitkovsky et al., 2010b). Models with richer contexts (Headden

et al., 2009), logistic normal distributions (Cohen et al., 2008) and Tree Substitution Gram-

mars to learn larger tree fragments (Blunsom and Cohn, 2010) have also been proposed.

The typical setup limits the length of training sentences, assumes that gold part-of-speech

(POS) tags are available, and learns models based only on POS tags or weak lexicalisation

(including only words with a frequency above a relatively high threshold). However it has

been shown that word-based grammar induction on large corpora can overcome the initial-

isation sensitivity of models trained on POS tags only (Pate and Johnson, 2016). Due to the

strong independence assumptions that these models make they are not suitable for either

accurate supervised parsing or language modelling.

2.4.4 Syntactic language modelling

In principle any generative parser can be applied to language modelling by marginalising

over all possible parses of a sentence. However PCFGs make too strong independence

assumptions for language modelling. Lexicalised PCFGs (Roark, 2001; Charniak, 2001)

do show improvements over n-gram models, but decoding is prohibitively expensive for

practical integration in language generation applications.

Chelba and Jelinek (2000) and Emami and Jelinek (2005) proposed incremental syn-

tactic language models. Their models predict binarised constituency trees with a transition-

based model, and are parameterised by deleted interpolation n-gram smoothing and feed-

forward neural networks, respectively. Rastrow et al. (2012) applied a transition-based

dependency language model to speech recognition, using hierarchical interpolation and

relative entropy pruning. However, the model perplexity only improves over an n-gram

model when interpolated with one.
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Chapter 3

Markov Models for Generative
Dependency Parsing

In this chapter, we propose generative models for transition-based dependency parsing

based on Markov assumptions, decomposing the probability distribution into local pre-

dictions conditioned on bounded-length finite contexts. We show that these models are

expressive enough for both parsing and language modelling, while approximate inference

can be performed efficiently.

The first model is parameterised by Hierarchical Pitman-Yor Process (HPYP) language

models (Teh, 2006a), the second by feed-forward neural network language models (Bengio

et al., 2003). These models offer contrasting solutions to the problem of sparsity inherent

in long conditioning contexts, which accurate models require. The first uses carefully spec-

ified priors encoding the relative importance of elements in the conditioning context. The

neural network models overcome sparsity by learning distributed representations of words,

as well as arbitrary combinations of context elements through the neural network hidden

layer. The advantage of the neural network approach is that we do not have to specify an

ordering of the context elements.

Exact inference is infeasible as the marginal probability cannot be factored into a dy-

namic program due to the large conditioning contexts used. Therefore we propose ap-

proximate inference methods with particle filtering. We also propose an efficient decoding

algorithm based on particle filtering that can adapt the beam size to the uncertainty in the

model while jointly predicting POS tags and parse trees.

In addition to supervised parsing, we also perform semi-supervised learning to improve
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language modelling, and evaluate the syntactic language models qualitatively.

3.1 Generative transition-based parsing

The generative models we propose in this chapter are based on arc-standard transition-

based parsing. The parser generates a word (and optionally its POS tag) when it is shifted

onto the stack, similar to the model proposed by Cohen et al. (2011). Due to spurious am-

biguity supervised models can be trained either with a deterministic oracle, approximating

the tree probability with the probability of its oracle derivation, or with a non-deterministic

oracle, by approximating the sum over possible derivations of the parse tree.

The joint probability distribution over a sentence with words w1:n, tags t1:n and transi-

tion sequence s1:2n is defined as

p(w1:n, t1:n, s1:2n) =
n∏
i=1

(
p(ti|htmi

)p(wi|ti,hwmi
)

mi+1∏
j=mi+1

p(sj|hsj)
)
, (3.1)

where mi is the number of transitions that have been performed just before (ti, wi) is

shifted, and hsj ,h
t
j and hwj are the (bounded length) conditioning contexts at the jth transi-

tion for the transition, tag and word predictions, respectively. The transition and word (and

tag) predictions are interleaved, as word predictions are triggered by shift actions, which

are a subset of the full transition sequences (n actions out of length 2n). Between the pre-

diction of (ti, wi) and (ti+1, wi+1), transitions indexed mi to mi+1 are performed. Shift

actions occur at transitions smi
.

The first transition will always be shift, as the root node may not be removed from the

stack. The generative process terminates when a right-arc is added from the root node to

the head word, such that only the root remains on the stack. This implicitly generates the

end-of-sentence token wn.1

3.2 Inference

At every time step the transition system configuration is a function of the entire history

of transition actions taken. Therefore, although we condition only on a fixed number of

elements in the configuration, exact inference is intractable.
1We assume here that the root node has a single child, the head word.
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The inference problems are to estimate the posterior distribution p(s1:2n, t1:n|w1:n), and

the marginal distribution p(w1:n). For unsupervised learning we need to be able to sample

from the posterior, while the marginal distribution is used for language modelling. For

parsing we have to find the transition sequence that maximises the posterior. In addition to

formulating the particle filter for sampling and estimating the marginal distribution sequen-

tially, we propose a beam search decoder which is a heuristic approximation of the particle

filtering algorithm.

3.2.1 Importance sampling

We view the model as a hidden state space model, where at each time step wi is observed

and the hidden state is a tuple

xi = (s1:mi
, t1:i) (3.2)

representing the entire transition sequence history up to that point. The initial state x0 is an

empty tuple.

The joint distribution then factorises as

p(w1:n,x1:n) =
n∏
i=1

p(xi|xi−1,w1:i−1)p(wi|xi,w1:i−1), (3.3)

where

p(xi|xi−1,w1:i−1) =
( mi∏
j=mi−1+1

p(sj|s1:j−1, t1:i−1,w1:i−1)
)
p(ti|s1:mi

, t1:i−1,w1:i−1),

(3.4)

which is approximated (with Markov assumptions) as

p(xi|xi−1,w1:i−1) ≈
( mi∏
j=mi−1+1

p(sj|hsj)
)
p(ti|htmi

), (3.5)

p(wi|xi,w1:i−1) ≈ p(wi|ti,hwmi
). (3.6)

Predicting xi consists of a sequence of 0 or more reduce actions (left- or right-arcs)

and a shift action which predicts the next tag and indicates that the next word should be

predicted. At the final time step (where wn is the end-of-sentence symbol), a sequence of

reduce actions is performed that leaves only the root symbol remaining on the stack. The

end-of-sentence tag and word prediction follow deterministically.
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The state space grows exponentially over time; although we condition on a fixed num-

ber of elements at each time step, their choice is a function of the entire state space. There-

fore exact inference with the forward-backward dynamic programming algorithm is not

tractable. We first show how to perform approximate inference with importance sampling,

and then introduce the particle filter to perform sequential importance sampling (Doucet

and Johansen, 2009).

As we cannot sample efficiently from the posterior distribution p(x|w) we define a

proposal distribution π from which we can sample efficiently:

π(x|w) =
n∏
i=1

p(xi|xi−1,w1:i−1). (3.7)

This distribution can essentially be seen as a discriminative parsing model without look-

ahead, as it is a product of the transition (and POS tag) probabilities. This proposal distri-

bution is chosen as it enables sequential sampling (as defined below) and decomposes over

time steps, while maintaining the expressiveness of the full model.

The importance weights, which are used to obtain an unbiased estimate of the marginal

distribution by reweighing the (biased) samples from the proposal distribution, are defined

as

ω(x1:i) =
p(x1:i,w1:i)

π(x1:i|w1:i)
(3.8)

=
n∏
i=1

p(xi|xi−1,w1:i−1)p(wi|xi,w1:i−1)

p(xi|xi−1,w1:i−1)
(3.9)

=
i∏

j=1

p(wj|xj,w1:j−1). (3.10)

Suppose k independent samples are drawn from π:

x(i) ∼ π(x|w) for i = 1, . . . , k. (3.11)

The empirical estimate of the posterior distribution is then

p(x|w) ≈
k∑
i=1

W iδx(i)(x), (3.12)

where δ is the Dirac delta function and

Wi =
ω(x(i))∑k
j=1 ω(x(j))

. (3.13)
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The Monte Carlo estimate of the marginal distribution is

p(x) = Eπ(x|w)ω(x) (3.14)

≈MC 1

k

k∑
i=1

ω(x(i)). (3.15)

3.2.2 Particle filtering

Sampling complete transition sequences from π(x|w) will have high variance; instead we

perform sequential importance sampling. The posterior and marginal distributions satisfy

the following recursions, which form the basis of particle filtering (Doucet and Johansen,

2009):

p(x1:i|w1:i) = p(x1:i−1|w1:i−1)
p(xi|xi−1,w1:i−1)p(wi|xi,w1:i−1)

p(wi|w1:i−1)
, (3.16)

p(wi|w1:i−1) =
∑
xi−1

p(xi−1|w1:i−1)
∑
xi

p(xi|xi−1,w1:i−1)p(wi|xi,w1:i−1). (3.17)

The proposal distribution at time step i is

π(xi|w1:i−1) = p(xi|xi−1,w1:i−1). (3.18)

In order to obtain unbiased samples with the particle filter, the importance weights can

be estimated sequentially as

ω(x1:i) =
i−1∏
j=1

p(wj|xj,w1:j−1) · p(wi|xi,w1:i−1) (3.19)

= ω(x1:i−1)p(wi|xi,w1:i−1). (3.20)

The importance weights are normalised when sampling from the posterior (Equation 3.13),

so the marginal p(wi|w1:i−1) does not have to be computed explicitly.

Sequential importance sampling is used to obtain a Monte Carlo estimate of the marginal

distribution,

p(wi|w1:i−1) ≈MC 1

k

k∑
j=1

ω(x
(j)
1:i−1)

∑
xi

p(xi|x(j)
i−1,w1:i−1)p(wi|x(j)

i ,w1:i−1), (3.21)

where

x
(j)
i−1 ∼ π(xi−1|x(j)

i−2,w1:i−1) for j = 1, . . . , k. (3.22)
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In practice we shall also approximate the marginal distribution by summing over the

beam after decoding with the method described in Section 3.2.3, showing that this is a

low-variance estimate.

Now we define the bootstrap particle filter (Gordon et al., 1993) for sampling from

the posterior. A set of k samples, called particles, are sampled sequentially from the pro-

posal distribution. At every time step, each sample is extended by independently sampling

transition actions s until s equals shift, and then sampling a tag t.

Over time the (normalised) importance weights might become very peaked, in practice

assigning all the weight to a single particle. To address this, the bootstrap filter introduces

a selection step:

At time step i we have samples from π(x1:i|w1:i) but the goal is to obtain samples from

p(x1:i|w1:i) = ω(x1:i)π(x1:i|w1:i). (3.23)

These samples can be obtained by sampling from the distribution over the particles given

by their (normalised) importance weights. This is referred to as resampling; k samples are

selected as the new particles. The importance weights ω(x
(j)
1:i ) of the resampled particles

are reset to 1, as the samples are now unbiased.

In our implementation we resample at each time step, but alternatively one can set

criteria to determine whether to resample or not at a give time step; the most common

criterion is based on the effective sample size (Doucet and Johansen, 2009).

The complete particle filter as applied to our model is given in Algorithm 3. In the im-

plementation we keep track of the count of each active particle rather than storing duplicate

particles.

3.2.3 Decoding

Beam-search decoders for transition-based parsing (Zhang and Clark, 2008) keep a beam

of partial derivations, advancing each derivation by one transition at a time. When the size

of the beam exceeds a set threshold, the lowest-scoring derivations are removed. However,

in an incremental generative model we need to compare derivations with the same number

of words shifted, rather than same number of transitions performed (Titov and Henderson,

2007).
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Algorithm 3 Particle filter for sampling derivations from the Markov generative depen-
dency parser.

1: Given w1:n, number of particles k.
2: for i = 1 . . . n do
3: Sampling step
4: for l = 1 . . . k do
5: j ← mi−1
6: while sj = Shift do
7: j ← j + 1
8: Sample s(l)j ∼ p(s|hs(l)j )
9: end while

10: Sample t(l)i ∼ p(t|ht(l)j )

11: ω
(l)
i ← p(t

(l)
i |h

t(l)
j )p(wi|t(l)i ,h

w(l)
j )

12: mi ← j
13: end for
14: Normalise ωi
15: Selection step
16: for l = 1 . . . k do
17: Resample particles {(s(l

′)
1:mi

, t
(l′)
1:i ), l′ = 1, . . . , k} according to ωi

18: end for
19: end for
20: return sampled derivations {(s(l)1:2n, t

(l)
1:n), l = 1, . . . , k}.

One solution is to keep n separate beams, each containing only derivations with iwords

shifted, but this approach leads to O(n2) decoding complexity. For linear time decoding

the total number of reduce transitions that can be performed over all derivations between

two shift transitions has to be bounded.

We therefore propose a novel linear-time decoding algorithm which modifies the parti-

cle filter to become a beam-search heuristic (see Algorithm 4). The beam consists of partial

derivations dj . Instead of specifying a fixed limit on the size of the beam, the beam size is

controlled by setting the number of particles k. Each dj is associated with kj particles, such

that
∑

j kj = k. First, instead of sampling, the procedure is made deterministic by dividing

kj proportionally between taking a shift or reduce transition, according to p(sj|hsj). If a

non-zero number of particles are assigned to reduce, the highest scoring left-arc or right-

arc transitions are chosen deterministically, and derivations that execute them are added to

the beam. In practice we found that adding only the highest scoring reduce transition gives

very similar performance to adding multiple ones.
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Algorithm 4 Beam search decoder for arc-standard generative dependency parsing.
1: Given Sentence w1:n, number of particles k.
2: Initialize the beam with parser configuration d with weight d.θ = 1 and d.k = k particles
3: for i = 1 . . . n do
4: Search step
5: for all derivation d in beam do
6: nshift = round(d.k · p(sh|d.hs))
7: nreduce = d.k − nshift
8: if nreduce > 0 then
9: s = argmaxs 6=sh p(s|d.hs)

10: beam.append(dd← d)
11: dd.k ← nreduce
12: dd.θ ← dd.θ · p(s|d.hs)
13: dd.execute(s)
14: end if
15: d.k ← nshift
16: if nshift > 0 then
17: d.θ ← d.θ · p(sh|d.hs) ·maxti p(ti|d.ht)p(wi|d.hw)
18: d.execute(sh)
19: end if
20: end for
21: Selection step
22: for all derivation d in beam do
23: d.θ′ ← d.k·d.θ∑

d′ d
′.k·d′.θ

24: for all derivation d in beam do
25: d.k = bd.θ′ · kc
26: if d.k = 0 then beam.remove(d)
27: end if
28: end for
29: end for
30: end for
31: return Parse tree of argmaxd in beam d.θ.

The decoder can also perform POS tagging. Up to three candidate tags are assigned

and corresponding derivations are added to the beam, with particles distributed relative to

their tag probabilities (in Algorithm 4 only one tag is predicted).

One search step consists of iterating through the beam, including processing items

added by reduce transitions during the pass, so that all items advance up to shifting the

next word. The selection step reallocates the number of particles assigned to each beam

item, again deterministically. Instead of computing importance weights, the reallocation

is now based on the normalised weights of beam item derivations, each weighted by its

current number of particles. The selection step allows the size of the beam to depend on
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the uncertainty of the model during decoding. The selectional branching method proposed

by Choi and McCallum (2013) for discriminative beam-search parsing has a similar goal.

The final search step consists of performing reduce transitions on each derivation until

they reach a terminal configuration. The dependency tree corresponding to the highest

scoring final derivation is returned.

3.3 Probability models

3.3.1 Bayesian model

For the Bayesian model the word, tag and action distributions are estimated with hierarchi-

cal Pitman-Yor processes. Draws in the generative process are defined as

t|ht ∼ Tht (3.24)

w|hw ∼ Whw (3.25)

s|hs ∼ Shs , (3.26)

where T,W and S are HPYPs for the tag, word and transition predictions, respectively. The

HPYP models interpolate between different context sizes by dropping one element at each

level in the HPYP to back off to a distribution lower in the hierarchy. The crucial modelling

choice is therefore the selection and ordering of the context, in order to avoid sparsity in

the back-off contexts. This choice can be seen as a hyperparameter of the model. In our

model the context consists of words and tags of nodes that are on the stack or dependents of

stack elements (see Table 3.1). For any node a, lc1(a) refers to the leftmost child node of a

in the partially constructed dependency tree, and rc1(a) to its rightmost child. The second

left-most and right-most child nodes are referred to as lc2(a) and rc2(a), respectively. The

POS tag of a is referred to as a.t and the word type as a.w.

The methodology followed to choose the contexts is described in Section 3.4 below.

In the conditioning contexts, word types are always the first to be dropped in the back-off.

The reason for this is that they are more sparse than POS tags, and the syntactic information

conveyed by the tags is more informative in guiding the next parsing action. We shall also

consider as a baseline unlexicalised models that are based only on POS tags.
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Prediction Context

ai σ1.t, σ2.t, rc1(σ1).t, lc1(σ1).t, σ3.t, rc1(σ2).t, σ1.w, σ2.w
tj σ1.t, σ2.t, rc1(σ1).t, lc1(σ1).t, σ3.t, rc1(σ2).t, σ1.w, σ2.w
wj β.t, σ1.t, rc1(σ1).t, lc1(σ1).t, σ1.w, σ2.w

Table 3.1: HPYP conditioning contexts for the transition, tag and word distributions of the
generative parser. The context elements are ordered from most important to least important;
the last elements in the lists are dropped first in the back-off structure.

Training For supervised training, given a training set of parsed and tagged sentences,

we use the oracle to extract a derivation (transition sequence) for each sentence. Training

examples for the word, tag and transition prediction models are extracted from the deriva-

tions.

To perform unsupervised learning with the Bayesian model, particle filtering is com-

bined with Gibbs sampling, giving rise to a particle Gibbs inference method (Andrieu et al.,

2010). Initially we sample a derivation for each unlabelled training sentence, and add it to

the Chinese Restaurant Process (CRP) model. Then for at Gibbs sampling iteration, for

each sentence we remove the training examples from the current derivation of the sentence

from the CRP, sample a new derivation, and add the examples for the new derivation back

to the CRP. For semi-supervised learning we apply structural annealing, assuming that the

distribution given by the labelled examples gives a good starting point. In the initial un-

supervised iterations we use the Viterbi derivations of unlabelled sentences, only sampling

from the distribution at later iterations (Spitkovsky et al., 2010b).

3.3.2 Neural network model

The second probability model is based on feed-forward neural networks. The word, tag and

action distributions are estimated with neural networks that share input and hidden layers

(and therefore use the same context), but with separate output layers.

The conditioning context templates are defined in Table 3.2. The neural network model

allows us to include a large number of elements without suffering from sparsity, and in

contrast to the HPYP model we do not have to specify any ordering of the elements.

Each context position is represented by vector representations of its word and POS tag;

these representations form the input layer of the network. The network has a single hidden
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Order Elements

1 σ1, σ2, σ3, σ4
2 lc1(σ1), rc1(σ1), lc1(σ2), rc1(σ2), lc2(σ1), rc2(σ1), lc2(σ2), rc2(σ2)
3 lc1(lc1(σ1)), rc1(rc1(σ1)), lc1(lc1(σ2)), rc1(rc1(σ2))

Table 3.2: Conditioning context elements for the feed-forward neural network: First, sec-
ond and third order dependencies are used.

layer, and we experiment with different non-linearities. The word probability distribution

is estimated with a class-factored softmax.

The supervised model is trained to maximise the joint distribution over parsed training

sentences. For our experiments we train the model while the training objective improves

and choose the parameters of the iteration with the best development set accuracy, perform-

ing early stopping. The model obtains high accuracy with only a few training iterations.

3.4 Experiments

3.4.1 Data

We evaluate our model as a parser on the widely used English Penn treebank (Marcus

et al., 1993) setup, training on WSJ sections 02-21, developing on section 22, and testing

on section 23. We use both the YM and SD representations (see section 2.2.2). We re-

port unlabelled attachment score (UAS) and labelled attachment score (LAS), excluding

punctuation.

Unknown words are replaced by tokens representing morphological surface features

(based on capitalization, numbers, punctuation and common suffixes) similar to those used

in the implementation of generative constituency parsers (Klein and Manning, 2003). In

particular we reimplement the unknown word classifier of the Berkeley parser.2 Words that

occur only once in the training data are replaced by their unknown word classes.

3.4.2 Model setup

Our HPYP dependency parser (referred to as HPYP GenDP when reporting results) is

trained with 20 iterations of Gibbs sampling, resampling the hyperparameters after every

2http://github.com/slavpetrov/berkeleyparser
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Model UAS LAS

MaltParser unlexicalised 85.23 82.80
MaltParser lexicalised 89.17 87.81

Unlexicalised 85.64 82.93
Lexicalised, unlex context 87.95 85.04
Lexicalised, tagger POS 87.84 85.54
Lexicalised, predict POS 89.09 86.78
Lexicalised, gold POS 89.30 87.28

Table 3.3: HPYP parsing accuracies on the YM development set, for various lexicalised
and unlexicalised setups.

iteration. Training with a deterministic oracle takes 28 seconds per iteration (excluding re-

sampling hyper-parameters), while a non-deterministic oracle (sampling with 100 particles)

takes 458 seconds.

The implementation of our neural network parser (FFNN GenDP) is partly based on

the C++ OxLM neural language modelling framework (Baltescu et al., 2014).3 The model

parameters are initialised randomly by drawing from a Gaussian distribution with mean 0

and variance 0.1, except for the bias weights, which are initialised by the unigram distribu-

tions of their output. We use mini-batches of size 128, L2 regularisation parameter 10, and

word representation and hidden layer sizes 256. The AdaGrad learning rate is initialised to

0.05.

3.4.3 Bayesian modelling choices

We consider several modelling choices in the construction of the Bayesian model. The

model is trained on the YM dataset, and we evaluate different modelling choices on the

YM development set. Development set parsing accuracies are given in Table 3.3.

As a discriminative baseline we use MaltParser (Nivre et al., 2006), a discriminative

arc-standard parser with a linear SVM classifier. Although the accuracy of this model is

not state-of-the-art, it does enable us to compare against a discriminative model with a

feature set based on the same elements as in our conditioning contexts.

3Code for both the Bayesian and neural models are available at https://github.com/janmbuys/oxdp.
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Context UAS LAS

σ1.t, σ2.t 73.25 70.14
+rc1(σ1).t 80.21 76.64
+lc1(σ1).t 85.18 82.03
+σ3.t 87.23 84.26
+rc1(σ2).t 87.95 85.04
+σ1.w 88.53 86.11
+σ2.w 88.93 86.57

Table 3.4: Parsing accuracy for various sized HPYP conditioning contexts. Results are
given on the YM development set.

HPYP priors The first modelling choice is the selection and ordering of elements in the

conditioning contexts of the HPYP priors. Table 3.4 shows how the development set ac-

curacy increases as more elements are added to the conditioning context. The results are

for jointly predicting POS tags (see below). The first two words on the stack are the most

important, but insufficient – second-order dependencies and further stack elements should

also be included in the context. The challenge is that the back-off structure of each HPYP

specifies an ordering of the elements based on their importance in the prediction. We are

therefore much more restricted than classifiers with large, sparse feature-sets which are

commonly used in transition-based parsers. Due to sparsity, the word types are the first

elements to be dropped in the back-off structure, and elements such as third-order depen-

dencies cannot be included successfully in our model.

Sampling over parsing derivations during training improves performance marginally

by 0.16% to 89.09 UAS. When using a single unknown word token instead of multiple

unknown word classes, performance drops to 88.60 UAS.

POS tagging The standard practice in transition-based parsing is to obtain POS tags with

a stand-alone tagger before parsing. However, as our generative model includes a distribu-

tion over POS tags, we can use the model to assign POS tags jointly during decoding. We

compare predicting tags against using gold standard POS tags and tags obtained using the

Stanford POS tagger (Toutanova et al., 2003). For the Stanford tagger we use the efficient

“left 3 words” model, trained on the same data as the parsing model, excluding distribu-

tional features. Tagging accuracy is 95.9% on the development set and 96.5% on the test
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Algorithm Beam size Sentences/sec UAS

Beam 32 3 88.82
Beam 16 7 88.46

Particle 5000 18 89.03
Particle 1000 27 88.93
Particle 100 54 87.99
Particle 10 104 85.27

Table 3.5: Speed-accuracy trade-offs for HPYP parsing different decoding configurations
(beam search or particle filtering), jointly predicting POS tags.

Algorithm Beam size Sentences/sec UAS

Beam 16 29 87.64
Particle 1000 108 87.59
Particle 100 198 87.46
Particle 10 333 85.86

Table 3.6: Speed-accuracy trade-offs for HPYP parsing different decoding configurations
(beam search or particle filtering), separate POS tagging.

set. Even though the tags predicted by our model are slightly less accurate than the Stan-

ford tags on the development set (95.6%), jointly predicting tags and decoding increases

the UAS by 1.1% (see Table 3.3). The joint prediction is a better fit to the generative model.

However, using gold POS tags still gives the best parsing accuracy.

Lexicalisation We train lexicalised and unlexicalised versions of our model (see Table

3.3). Unlexicalised parsing gives us a strong baseline over which to consider our model’s

ability to predict and condition on words. Unlexicalised parsing is also considered to be

robust for applications such as cross-lingual parsing (McDonald et al., 2011). Additionally

we consider a version of the model that does not include lexical elements in the condi-

tioning context, satisfying a HMM-like factorisation. This model performs only 1% UAS

lower than the best lexicalised model, although it makes much stronger independence as-

sumptions.

Speed-accuracy trade-offs We consider the trade-off between speed and accuracy in the

model, which can be controlled through the choice of decoding algorithm, beam size (or
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Model UAS LAS

Words only, 3rd order 89.30 87.78
Word and tags, 2nd order 90.34 89.08
Words and tags, 3rd order 90.52 89.29

Table 3.7: Feed-forward neural network parsing accuracies on the YM development set.

number of particles) and predicting POS tags either jointly or separately. The results are in

Tables 3.5 and 3.6.

The optimal number of particles is found to be 1000 - more particles only increase ac-

curacy by about 0.1 UAS. Although jointly predicting tags is more accurate, models using

pre-obtained tags are more accurate when comparing faster models: At a speed of approxi-

mately 100 sentences per second the pre-tagged model’s accuracy is 87.59 UAS (Table 3.6)

against 85.27 UAS for the joint model (Table 3.5). In comparison, the MaltParser parses

approximately 375 sentences per second.

We also compare our particle filter-based algorithm against a more standard beam-

search algorithm that prunes the beam to a fixed size after each word is shifted. This

algorithm is much slower than the particle-based algorithm – to get similar accuracy it

parses only 3 sentences per second (against 27) when predicting tags jointly, and 29 (against

108) when using pre-obtained tags.

3.4.4 Neural network modelling choices

Development set results for the neural network model are given in Table 3.7, based on

the YM representation. Third order dependencies improves performance by 0.18% UAS

over models based on first and second order dependencies. Including additional elements

beyond our third-order feature set (for example children of the third stack item) did not

improve performance further in our experiments. Modelling POS tags (but using separately

predicted tags) improved performance by 1.2% UAS and 1.5% LAS.4 This shows that the

distributed representations learned by the network are able to capture most of the lexical

categorization of the syntactic role of words, as opposed to non-distributed models which

4Joint tagging is prohibitively slow.
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Model UAS LAS Sentences/sec

Wallach et al. (2008) 85.7 - -
Titov and Henderson (2007) 90.75 89.29 1

MaltParser 88.88 87.41 375
Zhang and Nivre (2011) 92.9 91.8 29
Choi and McCallum (2013) 92.96 91.93 110
Martins et al. (2013) 93.07 - 42

HPYP GenDP 88.47 86.13 18
FFNN GenDP 90.16 88.83 4

Table 3.8: Parsing accuracies on the YM test set, compared with published results. De-
coding speeds are also given. Titov and Henderson (2007) was retrained to enable direct
comparison.

rely much more on POS. For the choice of activation function of the neural network hidden

layer we found that the sigmoid function gives the best performance, following by tanh.

3.4.5 Comparative parsing results

Test set results comparing our models against existing discriminative and generative de-

pendency parsers are given in Tables 3.8 and 3.9.

Our HPYP model performs much better than the Bayesian version of Eisner’s gener-

ative model (Wallach et al., 2008). The accuracy of this model is only 2.3 UAS below

the generative model of Titov and Henderson (2007), despite that model being much more

powerful. The UAS of our model is very close to that of the MaltParser. However per-

formance is relatively worse on LAS than on UAS. An explanation for this is that as we

do not include labels in the conditioning contexts, the predicted labels are independent

of words that have not yet been generated. Despite these promising results, the HPYP

model’s performance still lags behind discriminative parsers with beam-search and richer

feature sets (Zhang and Nivre, 2011; Choi and McCallum, 2013), as well as the third-order

graph-based parser of Martins et al. (2013).

Our neural generative model outperforms the Bayesian model by a large margin. The

model’s accuracy is 0.6% UAS below the generative model of Titov and Henderson (2007)

on the YM test set, despite that model being able to condition on arbitrary long contexts.

Our model is also much faster than Titov and Henderson’s model, for both decoding and
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Model UAS LAS

Titov and Henderson (2007) 90.93 89.42
FFNN GenDP 91.11 89.41

Table 3.9: Parsing accuracies on the WSJ test set, CoNLL dependencies.

Model UAS LAS

MaltParser 88.9 86.2

Chen and Manning (2014) 91.8 89.6
Dyer et al. (2015) 93.1 90.9
Weiss et al. (2015) 93.99 92.05

Titov and Henderson (2007) 91.43 89.02

HPYP GenDP 87.9 86.2
FFNN GenDP 90.10 87.74

Table 3.10: Dependency parsing accuracies on the WSJ test set, Stanford dependencies.

training (the Titov and Henderson model takes 3 days to train). On the CoNLL dependen-

cies dataset our model is slightly more accurate than Titov and Henderson’s model (Table

3.9).

We also evaluate our models on Stanford dependencies to enable comparison against

recent neural network dependency parsers (Table 3.10). Both our models are less accurate

on this representation, a tendency that has widely been observed in discriminative parsing,

as the Stanford dependencies represent more complex relations.

Analysis We argue that the main weakness of the HPYP parser is sparsity in large con-

ditioning contexts composed of tags and words. The POS tags in the parser configuration

context already give a very strong signal for predicting the next transition. As a result it is

challenging to construct PYP reduction lists that also include word types without making

the back-off contexts too sparse. The generative neural network model overcomes those

limitations, but still underperforms compared to discriminative models.

The other limitation is that our decoding algorithm, although efficient, still prunes the

search space aggressively, while not being able to take advantage of look-ahead features as

discriminative models can. We note that discriminative parsers cannot attain high perfor-

mance without look-ahead features, even when a large beam is used (see Section 4.4).
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Model Dev perplexity Test perplexity

IKN 5-gram 155.93 170.09
HPYP 5-gram 156.61 171.41
FFNN 5-gram 147.80 157.13

HPYP GenDP (YM) 157.35 168.36
HPYP GenDP (SD) 147.47 162.04

FFNN GenDP (YM) 152.54 159.34
FFNN GenDP (YM) + unsup 139.62 148.33
FFNN GenDP (SD) 138.96 149.69
FFNN GenDP (SD) + unsup 126.79 138.62

Table 3.11: WSJ language modelling development and test results. We compare our mod-
els, with and without unsupervised tuning, to n-gram baselines.

3.4.6 Language modelling

Next we evaluate our models as syntactic language models, first on the WSJ and then on

larger unlabelled corpora with semi-supervised learning. We perform unlabelled parsing,

as the labels are not included in the conditioning contexts to make transition and word

predictions. For the HPYP model we use jointly predicted POS tags, but for the neural

model the POS prediction cost outweighs the small potential gain.

Language models are evaluated intrinsically by estimating perplexity on held-out datasets.

Cross-entropy is the average negative log likelihood per symbol of the test data according

to the model.5 Perplexity is cross-entropy exponentiated.

Perplexity results on the WSJ are given in Table 3.11, using the same vocabulary as

for parsing. As baselines we report results on interpolated Kneser-Ney (IKN) (Kneser and

Ney, 1995), HPYP and neural network 5-gram models (using a larger context results in

very limited perplexity gains). The small difference between the Kneser-Ney and Bayesian

models can be ascribed to implementation differences. The neural n-gram model gives

better performance than both the count-based n-gram and syntactic models.

For our dependency-based language models we report perplexities computed by sum-

ming over the final beam in the particle filter-based decoder, as it is intractable to sum over

all possible parses to compute the true marginal probability. This gives an upper bound

5We exclude end-of-sentence symbols from the symbol count.
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on the true model perplexity (lower perplexities are better). Increasing the number of par-

ticles has a very small impact on perplexity, which indicates that the bound is relatively

small. Alternatively a Monte Carlo estimate can be obtained with the particle filter, based

on Equation 3.21. In addition to the syntactic features used for parsing, the neural syntactic

language model also uses the 5-gram word context in its input layer.

First we train the models with supervised parse trees. Both models perform consid-

erably better with the Stanford dependencies. While the supervised YM models perform

very similar to n-gram models of the same type, the Stanford dependencies yield perplexity

improvements on both the HPYP and FFNN models.

Second we consider a training setup where we first perform 5 supervised iterations, and

then continue to train without supervision, treating the transition sequence as latent. Parse

trees are sampled with a particle filter. Updates are performed for every sentence for the

Bayesian model, and for every mini-batch for the neural network model. For the Bayesian

model this is an instance of particle Gibbs sampling (Andrieu et al., 2010). This approach

further improves the perplexities of the neural models, but the SD-initialised model still

gives the best performance due to SGD’s sensitivity to initial conditions, yielding a 18.5%

perplexity reduction relative to the Kneser-Ney model. We did not observe significant

improvements with the Bayesian model following this approach.

While trained on the same sentences, this approach allows the model to learn parses

that are not necessarily consistent with the annotated parse trees. The unsupervised training

stage results in the parsing accuracy dropping by about 2%. We postulate that the model

is learning to make small adjustments to favour parses that explain the data better than the

annotated parse trees, leading to the improvement in perplexity.

Semi-supervised training We consider a semi-supervised setup where we train on large

unsupervised corpora from the WMT News Crawl Data.6 The models are evaluated on

the newstest2012 test set. We used two different subsets: 24.1 million words for the

Bayesian model and 7 million words for the neural model. The vocabularies were ob-

tained based on the available training data, so the results of the two setups are not directly

comparable.

6Available at http://www.statmt.org/wmt14/translation-task.html.
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Model Perplexity

HPYP 5-gram 178.13
HPYP GenDP 163.96

FFNN 5-gram 203.5
FFNN GenDP 200.7

Table 3.12: Semi-supervised dependency language modelling, testing on
newstest2012. The HPYP and neural models were trained on different datasets.

Semi-supervised learning is performed as follows: After training the model on the WSJ

we parsed the unannotated data with the model, and continued to train on the highest-

scoring parses. This is similar to Viterbi EM training for unsupervised learning, or self-

training for parsing (McClosky et al., 2006). For the HPYP model only the word prediction

distribution is updated, not the tag and transition distributions. An alternative approach

would be to use an external discriminative parser to parse the unlabelled data, and train the

generative model on that. External parsers have been shown to improve semi-supervised

learning, for example using tri-training (Zhou and Li, 2005).

We observe improvements in perplexity for both the Bayesian and neural models (Ta-

ble 3.12). This is a promising result, as it shows that our model can successfully generalise

to larger vocabularies and unannotated datasets. We expect larger improvements when

training on more data and with more sophisticated inference.

3.4.7 Generation

To evaluate our generative model qualitatively we performed unconstrained generation of

sentences (and parse trees) from the model. We found that sentences generated by our

syntactic generative models display a higher degree of syntactic coherence, while retaining

the local coherence of the n-gram models. Example sentences are given in Table 3.13.

For each model we generated 1000 (unbiased) samples and selected the 10 highest-scoring

sentences of length 10 or more. The model vocabularies include unknown word classes.

The quality of the sentences generated by the dependency model is superior to that of

the n-gram model, despite the models having similar test set perplexities. The dependency

model was also able to generate balanced quotation marks.
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otherwise , actual profit is compared with the 300-day estimate .
the companies are followed by at least three analysts , and had a minimum five-cent change in actual earnings .
bonds : shearson lehman hutton treasury index NUM , up
posted yields on NUM year mortgage commitments for delivery within NUM days .
in composite trading on the new york mercantile exchange .
the company , which has NUM million shares outstanding .
the NUM results included a one-time gain of $ NUM million .
however , operating profit fell NUM % to $ NUM billion from $ NUM billion .
merrill lynch ready assets trust : NUM % NUM days ; NUM % NUM to NUM days ;
in new york stock exchange composite trading , one trader .

sales rose NUM to NUM million from $ NUM .
estimated volume was about $ NUM a share , .
meanwhile , annual sales rose to NUM % from $ NUM .
mr. bush ’s profit climbed NUM % , to $ NUM from $ NUM million million , or NUM cents a share .
treasury securities inc. is a unit of great issues .
“ he is looking out their shareholders , ” says .
while he has done well , she was out .
that ’s increased in the second quarter ’s new conventional wisdom .
mci communications said net dropped NUM % for an investor .
association motorola inc. , offering of $ NUM and NUM cents a share .

the u.s. union board said revenue rose 11 % to $ NUM million , or $ NUM a share .
mr. bush has UNK-ed a plan to buy the company for $ NUM to NUM million , or $ NUM a share .
the plan was UNK-ed by the board ’s decision to sell its $ NUM million UNK loan loan funds .
in stocks coming months , china ’s NUM shares rose 10 cents to $ NUM million , or $ NUM a share .
in the case , mr. bush said it will sell the company business UNK concern to buy the company .
it was NUM common shares in addition , with $ NUM million , or $ NUM a share , according to mr. bush .
in the first quarter , 1989 shares closed yesterday at $ NUM , mr. bush has increased the plan .
last year ’s retrenchment price index index rose 11 cents to $ NUM million , or $ NUM million is asked .
last year earlier , net income rose 11 million % to $ NUM million , or 91 cents a share .
the u.s. union has UNK-ed $ NUM million , or 22 cents a share , in 1990 , payable nov. 9 .

Table 3.13: Sentences sampled from the generative models: (above) IKN n-gram model;
(middel) HPYP-DP; (bottom) FNN-DP.

59



3.5 Conclusion

We presented an approach to generative dependency parsing models that, unlike previous

models, retains most of the speed and accuracy of discriminative parsers. Our models

can accurately estimate probabilities conditioned on long context sequences. They scale

to large training and test sets and, even though joint probability distribution over sentences

and parses have to be estimated, decoding is efficient. Additionally, the syntactic generative

models give strong language modelling performance. For future work we believe that these

models can be applied successfully to natural language generation tasks such as machine

translation.
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Chapter 4

Recurrent Models for Generative
Dependency Parsing

Recent advances in language modelling have been driven by the success of recurrent neu-

ral networks (RNNs), in particular Long Short-term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) RNNs and their variants. RNNs are able to model long-distance de-

pendencies that could not be captured by count-based or neural n-gram language mod-

els (Kneser and Ney, 1995; Bengio et al., 2003). While it has been shown that RNNs

can model hierarchical bracketing structure (Karpathy et al., 2015), their ability to learn

context-free grammars or more expressive formal languages has been questioned (Grefen-

stette et al., 2015). It has also been shown that LSTMs can predict long-distance, syntax-

sensitive dependencies only when trained with explicit supervision (Linzen et al., 2016).

In this chapter we extend the approach to generative dependency parsing proposed in

Chapter 3 to models based on RNNs. A complementary goal is to formulate incremental

generative parsers (that can act as syntactic language models) which are amenable to exact

inference with dynamic programming. By treating the syntax (expressed by transition sys-

tem derivations) as a latent variable, dynamic programming enables unsupervised learning,

exact marginalisation for language modelling and exact decoding for parsing. We perform

both supervised and unsupervised learning, applying both the supervised and unsupervised

models to language modelling.

In particular we propose generative models based on the arc-eager and arc-hybrid tran-

sition systems with O(n4) dynamic programs based on Kuhlmann et al. (2011). While

the conditioning contexts licensed by these dynamic programs were too restrictive for tra-
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ditional models, recent work has shown that using sequential RNNs to learn underlying

features enables accurate parsing with very small features sets (Kiperwasser and Goldberg,

2016; Cross and Huang, 2016).

Our GPU implementation enables both exact decoding which is feasible in practice,

and unsupervised learning with backpropagation through the dynamic program to the RNN

hidden states (which encode sequential context).

4.1 Background

We review a number of recent approaches to augment RNNs to enrich their expressive-

ness. Neural abstract machines augment neural networks (usually RNNs) with external

memory, including stacks and other data structures, that are operated on with differentiable

operations to enable end-to-end learning. Bahdanau et al. (2015) proposed an attention

mechanism for encoder-decoder RNNs: At each time step in the decoder, an input repre-

sentation is computed by taking the expectation over the alignment between the current

RNN state and all the encoder states. This representation is then used to make predictions

with the decoder, and also fed into the decoder RNN to inform subsequent predictions. The

alignment is not treated as a latent variable; instead what is called a soft attention mecha-

nism is learned end-to-end by backpropagating from the predicted decoder outputs through

the expectation over alignments.

Memory networks (Weston et al., 2014; Sukhbaatar et al., 2015) use a similar mecha-

nism to read from a memory of RNN states. Neural Turing machines (Graves et al., 2014)

have read-write memory that is updated at each time step. Grefenstette et al. (2015) pro-

posed a neural stack that is operated on with differentiable push and pop computations for

end-to-end training. The stack representation is continuous. Every entry has an associated

real number indicating its strength; push and pop operations update these values rather than

executing discrete actions. On synthetic tasks these models outperform RNNs in learning

sequential structure equivalent to context-free grammars and more expressive formal lan-

guages.

The advantage of the models we propose over neural abstract machines is that we learn

probability distributions over parse trees or stack configurations. These distributions are
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interpretable, can be augmented with priors, and the discrete structures learned can be

applied to inference and reasoning.

Reinforcement learning has been proposed to learn compositional tree-based represen-

tations in the context of an end task (Andreas et al., 2016; Yogatama et al., 2016), but this

approach has high variance and provides no guarantees of finding optimal trees.

More recent research has proposed neural models with structured latent variables: Ras-

togi et al. (2016) incorporated neural context with a bidirectional RNN into weighted finite-

state transducers, while Tran et al. (2016) proposed a neural hidden Markov model for

Part-of-Speech (POS) induction. Yu et al. (2016) proposed a neural transduction model

with polynomial-time inference where the alignment is a latent variable. Finally Kim et al.

(2017) proposed structured attention mechanisms that compute features by taking expec-

tations over latent structure. They define a tree-structured model with a latent variable for

head selection, along with projectivity constraints. The model learns soft head selection,

which is used as a feature in an attention-based decoder.

There has been a number of proposals for generative transition-based models based on

RNNs. The architecture of Titov and Henderson (2007) is a recurrent model with addi-

tional connections to previous recurrent states at positions determined by the parser con-

figuration. However, the model was not applied to language modelling, and the complexity

of the architecture slows it down significantly. Dyer et al. (2016) proposed a generative

transition-based RNN constituency parser that is accurate for both parsing and language

modelling. The stack is encoded with a stack LSTM (Dyer et al., 2015) and parse trees

are generated top-down. Both these models are based on unbounded contexts which re-

quire approximate inference to compute marginal sentence probabilities, and unsupervised

learning is intractable.

Previous work have proposed dynamic programming algorithms that allow exact infer-

ence for transition-based parsers (Huang and Sagae, 2010; Kuhlmann et al., 2011; Cohen

et al., 2011). However these algorithms either required approximate inference due to a too

high polynomial order run-time complexity (Huang and Sagae, 2010), or had too restric-

tive feature spaces to be used as accurate models (Kuhlmann et al., 2011; Cohen et al.,

2011). In concurrent work, Shi et al. (2017) proposed accurate discriminative parsers with
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ROOT The boys from school play football

Figure 4.1: An unlabelled dependency tree.

minimal feature sets based on bidirectional LSTMs in which exact decoding and globally-

normalised discriminative training is tractable with dynamic programming.

4.2 Shift-reduce parsing

We start by defining a shift-reduce transition system in which the transition actions do

not add any dependency arcs, but simply process the words in the sentences left to right

through shifting words on to a stack and reducing (popping) them from the stack. We define

a generative model for this transition system and a dynamic program to perform inference

over all possible shift-reduce transitions to process a given sentence. In the next section we

extend this approach to transition systems for dependency parsing that are also based on

shift-reduce actions.

As defined in Section 2.3, the state variables of the transition system are the stack σ

and buffer index β. The initial configuration is (σ, β) = ([0], 1). We define two transition

actions, shift and reduce. Shift updates the transition state from (σ, j) to (σ|j, j+1). Reduce

changes the state from (σ|i, j) to (σ, j).

When processing w1:n, if β < n the root node may not be reduced from the stack, but

if β = n the system has to reduce. The terminal configuration is (∅, n). The root node is

allowed to have multiple dependents, as the dynamic program we propose below is unable

to enforce a single head word constraint. An example transition sequence for the sentence

in Figure 4.1 is given in Table 4.1, along with the sequences for the transition systems to

be defined in Section 4.3.
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Transition configuration Next Action

Stack σ Buffer β SR AH AE

ROOT The sh sh sh
ROOT, The boys re la la
ROOT boys sh sh sh
ROOT, boys from sh sh sh
ROOT, boys, from school re la la
ROOT, boys school sh sh ra
ROOT, boys, school play re ra re
ROOT, boys play re la la
ROOT play sh sh ra
ROOT, play football sh sh ra
ROOT, play, football EOS re ra re
ROOT, play EOS re ra re
ROOT EOS re la la

Table 4.1: Transition system derivation for the sentence “The boys from school play foot-
ball.” The actions for the shift-reduce (SR), arc-hybrid (AH) and arc-eager (AE) transition
systems are given. The transition actions are shift (sh), reduce (re), left-arc (la) and right-
arc (ra). For clarity words rather than indexes are used to represent the parsing state. At
each step the stack and buffer is shown, as well as the next transition action for each tran-
sition system. The different transition systems share the same stack configuration at each
step.
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Stack σ Index β − 1 Prediction

ROOT ROOT sh(The)
ROOT, The The re
ROOT The sh(boys)
ROOT, boys boys sh(from)
ROOT, boys, from from re
ROOT, boys from sh(school)
ROOT, boys, school school re
ROOT, boys school re
ROOT school sh(play)
ROOT, play play sh(football)
ROOT, play, football football re
ROOT, play football re
ROOT football re

Table 4.2: Shift-reduce derivation with the stack-next generative formulation.

4.2.1 Generative model

The generative model for this transition system defines a joint probability distribution

p(w1:n, s1:2n).1 A shift action in the transition system generates (assigns probability to)

the next word in the sentence. We consider two generative processes: In the first, shift gen-

erates wβ+1, the next word on the buffer. This is referred to as buffer-next. Alternatively

shift generates wβ , which is being shifted from the buffer to the stack. This is referred to

as stack-next. For clarity we shall formulate the models below with buffer-next but we also

perform experiments with stack-next.

The second formulation has a more intuitive generative story as the generation of a word

is conditioned on the top of the stack when it is generated (see Table 4.2), but the first for-

mulation has the advantage that transition predictions are conditioned on the current word

at position β, which is more informative for parsing predictions. The terminal conditions

for two the generative processes are also different: The buffer-next model predicts the end-

of-sentence token explicitly, after which reduce transitions are performed deterministically.

The stack-next model does not predict an end-of-sentence token, instead terminating when

the stack is empty.

The probability model is based on an RNN which encodes w left-to-right similar to

1We do not model POS tags here.
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Action State before State after Probability

Shift (S|i, j) (S|i|j, j + 1) pact(sh|hi,hj)pgen(wj+1|hi,hj)
Reduce (S|l|i, j) (S|l, j) pact(re|hi,hj)

Table 4.3: The shift-reduce transition system.

RNN language models (Section 2.1.3). The representation is computed independently of

s. We use LSTM cells (Hochreiter and Schmidhuber, 1997) for the RNN. Let h0:n be the

RNN encoding, where hi is the RNN hidden state after w1:i has been encoded2, therefore

representing wi and its left context. The stack at transition j is denoted as σ(j).

The generative model factors as

p(w1:n, s1:2n) =
n∏
i=1

(
p(wi|hσ(mi)

1

,hi−1)

mi+1∏
j=mi+1

p(sj|hσ(j)
1
,hi)

)
, (4.1)

where mi is the number of transitions that have been performed when (ti, wi) is shifted.

The overall structure is similar to that of the model in section 3.1: Between the current and

next word predictions a number of transitions are predicted, conditioned on the last RNN

hidden state as well as the RNN state corresponding to the top of the stack. The transition

system and its parameterisation is given in Table 4.3. The final transition of a derivation

reduces the root symbol from the stack.

The transition and word probability distributions are estimated by non-linear output

layers that take context representations of positions in the transition system as input:

pact = sigmoid(rT relu(Washσ1 +Wtbhβ)) (4.2)

pgen = softmax(RT tanh(Wgshσ1 +Wgbhβ)) (4.3)

The model has two ways of representing context: The RNN encoding, which has a

recency bias, and the stack, which can represent long range dependencies and has a syntac-

tic distance bias. The choice of RNN states corresponding to stack elements to condition

on is restricted by our goal of making the dynamic programming tractable. The choice of

which stack elements to condition on is restricted in order to make dynamic programming

tractable.
2The start of sentence symbol is encoded at position 0.
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4.2.2 Dynamic program

The dynamic program we define is based on the dynamic programs proposed by Kuhlmann

et al. (2011) and their application to generative dependency parsing (Cohen et al., 2011).

Although there is an exponential number of transition sequences to process a given se-

quence, under certain assumptions of what conditioning information is available to make

predictions, computations can be shared to enable polynomial-time parsing algorithms and

polynomial-space representations of parse forests.

The key to the dynamic program is the decomposition of the transition sequence into

push computations. A push computation is a sequence of transitions c0, . . . , cm which

results in a single node pushed to the stack: The initial stack is not modified during the

computation.

The simplest push computation is a single shift operation. Push computations can be

composed recursively: Two consecutive push computations followed by a reduce transition

yields a new push operation. Similarly a push computation can be decomposed into two

sub-computations and a reduce operation.

A deduction system (Shieber et al., 1995) is then constructed to tabulate the computa-

tions. Items in the deduction system are based on the tuple of word indexes (i, j), which

has the interpretation that there exists a push computation between actions ak and al such

that β = i at time step k and σ1 = i and β = j at time step l. In the derivation of the dy-

namic program (Kuhlmann et al., 2011), an additional index h is tracked, such that σ1 = h

at time time step l. However, it is shown that i = h for all derivable items in the transition

systems we use.

To compute probabilities inside the dynamic program we need access to the feature

space (conditioning context) of predictions corresponding to items that are derived. More

specifically, the deduction system items have to be extended to keep track of the feature

space indexes of the configurations before and after a push computation is performed, so

that the probabilities associated with inference rules can be computed. Our model’s feature

space is (σ1, β), so deduction system items are defined to have the form [l, i, j], where (l, i)

defines the feature space of the configuration before the push operation and (i, j) the feature

space afterwards. This extends the items defined by Kuhlmann et al. (2011).
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The deduction system is then defined as follows (∅ denotes an empty element, which is

used to refer to the second position on the stack in case there is only one element on the

stack):

Goal:

[∅, 0, n]

Axiom:

[∅, 0, 1]

Deduction rules:

[l, i, j − 1]→ [i, j − 1, j] (shift)

[l, i, k][i, k, j]→ [l, i, j] (reduce)

The deduction (inference) rules are used to derive new items from existing ones, similar

to the way that push computations are constructed: Performing shift on the state resulting

from any existing push computation constitutes a new push computation that corresponds to

a new item. Similarly, combining two (items corresponding to) push computations followed

by a reduce transition also derives an additional item. Kuhlmann et al. (2011) proved the

completeness and unambiguity of the deduction system.

Our deduction system results in an O(n4) algorithm. In concurrent work Shi et al.

(2017) showed that there exists an O(n3) formulation for transition-systems with the same

feature space; by deferring the computation of scores associated with shift transitions to

inference rules for reduce transitions, the deduction system has O(n2) rather than O(n3)

items.

The marginal probability distribution p(w) is computed by defining the inside score

I[l, i, j] for every item in the deduction system, which corresponds to the probability of

generating wi+1:j given that σ1 = l (and β = i). Computing the sentence probability

corresponds to deducing the goal, i.e., p(w0:n) = I[∅, 0, n].

The inside algorithm is given in Algorithm 5.3 The structure of the algorithm is similar

to that of the CKY algorithm for constituency parsing. Word probabilities are computed

incrementally, so the algorithm can be used for online estimation of next word probabilities

3Our implementation uses log probabilities.
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given partially observed sentences. The final reduce transition is predicted after the goal

configuration ([0], n) has been reached.

Algorithm 5 Inside algorithm for the shift-reduce transition-based generative model.
1: I[∅, 0, 1]← pgen(w1|h0)
2: for j = 2, . . . , n do
3: for i = 0, . . . , j − 2 do
4: I[i, j − 1, j]← pact(sh|hi,hj−1)pgen(wj|hi,hj−1)
5: end for
6: for i = j − 2, . . . , 1 do
7: for k = i+ 1, . . . , j − 1 do
8: T [k]← I[i, k, j]pact(re|hk,hj)
9: end for

10: for l = 0, . . . , i− 1 do
11: I[l, i, j]←

∑j−1
k=i+1 I[l, i, k]T [k]

12: end for
13: end for
14: I[∅, 0, j]←

∑j−1
k=1 I[∅, 0, k]I[0, k, j]pact(re|hk,hj)

15: end for
16: return I[∅, 0, n] + pact(re|h0,hn)

To train the model without supervised transition sequences, we optimise the negative

log likelihood of p(w0:n) directly with gradient-based optimisation. We use automatic dif-

ferentiation, which is equivalent to computing the gradients with the outside algorithm (Eis-

ner, 2016). To decode with the model, i.e. to find the most likely shift-reduce sequence for a

given sentence, we perform Viterbi search over the dynamic program by maximising rather

than summing over different split positions (lines 11 and 14 in Algorithm 5) and recover

the best transition sequence through back-pointers.

4.3 Transition-based dependency parsing

We now define generative dependency parsing models based on the shift-reduce model

proposed above. The shift-reduce system can be interpreted as letting every shift action add

a right-arc between the stack top and current index nodes. However, the clear limitation of

this interpretation is that no left-arcs can be added.

The arc-eager and arc-hybrid (Kuhlmann et al., 2011) transition systems are based on

the same shift-reduce operations, but include additional actions that add left- and right-arcs
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Action State before State after Probability Arc added

Shift (S|i, j) (S|i|j, j + 1) pact(sh|hi,hj)pgen(wj+1|hi,hj) -
Left-arc (S|l|i, j) (S|l, j) pact(la|hi,hj) j → i
Right-arc (S|l|i, j) (S|l, j) pact(ra|hi,hj) l→ i

Table 4.4: The arc-hybrid transition system.

between words to construct projective dependency trees. Arc-standard differs from these

transition systems in that its stack operations are not purely shift-reduce: It can also remove

σ2 while keeping σ1. Consequently the arc-standard dynamic program has an impractically

high time complexity of O(n5) (before an explicit feature model is added), so we shall not

explore it any further here.

4.3.1 Arc-hybrid parser

The arc-hybrid transition system has three actions: Shift, left-arc and right-arc. Left-arc

and right-arc are both reduce actions, popping the stack, but they add arcs between dif-

ferent word pairs: Left-arc from β to σ1 and right-arc from σ2 to σ1. The node popped

from the stack is always the dependent in the arc; consequently the dependency tree is con-

structed bottom-up as in arc-standard. The transitions and their probability distributions

in the generative model are given in Table 4.4. Left- and right-arc actions also predict arc

labels, using another output softmax conditioned on the same context. Note that the dy-

namic program does not allow us to condition on σ2, even though it heads the right-arcs

that are added. The dynamic program can be extended, but that would further increase

computational complexity; our results show that the model works well without it.

For supervised training we optimise the joint probability distribution p(w, s), where a

static oracle is used to derive s from the training examples. Note that there is spurious

ambiguity as multiple transition sequences can lead to the same parse tree: Under some

circumstances, where a right-arc is a valid transition given the current configuration, it can

be delayed by performing shift instead. The right-arc is then added later when the same

two words are on top of the stack again. Our oracle adds right-arcs as soon as possible.

The inside algorithm is similar to that of the shift-reduce parser. All decisions are

conditioned on the same elements. The reduce probability is obtained by summing the
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Action State before State after Probability Arc added

Shift (S|ib, j) (S|ib|j0, j + 1) pact(sh|hi, b,hj)pgen(wj+1|hi, b,hj , sh) -
Right-arc (S|ib, j) (S|ib|j1, j + 1) pact(ra|hi, b,hj)pgen(wj+1|hi, b,hj , ra) i→ j
Left-arc (S|l|i0, j) (S|l, j) pact(re|hi, 0,hj) j → i
Reduce (S|l|i1, j) (S|l, j) pact(re|hi, 1,hj) -

Table 4.5: The arc-eager transition system.

left- and right-arc scores. The dynamic program cannot distinguish between left- and right

arcs when computing the marginal probability, as the reduce actions result in the same

transition system configuration. Therefore while the model can be trained with supervision

as an arc-hybrid parser, it cannot be used for unsupervised dependency tree induction.

We perform Viterbi decoding with the dynamic program to find the transition sequence

s that maximises p(s,w). For every reduce decision (line 8 in Algorithm 5) we greed-

ily choose left-arc or right-arc, as the choice has no influence on the rest of the dynamic

program. The probability of the highest scoring arc label is included for each reduce pre-

diction. The splitting point for each item reached by a reduce action is recorded, so that the

highest scoring derivation can be recovered.

4.3.2 Arc-eager parser

The arc-eager parser was defined in Section 2.3. As noted, the two reduce actions, reduce

and left-arc, are always mutually exclusive. To keep track of which actions are valid, here

we augment the state configuration to record for each element on the stack whether it is

headed or not. A derivation is valid only if all the generated nodes (except the end-of-

sentence token) are headed when the terminal configuration is reached, so that the depen-

dency graph is connected. Therefore when a shift action is performed which sets β = n,

all the words on the stack (apart from the root) have to be headed; reduce transitions then

follow deterministically. The arc-eager transition actions and their parameterisations are

given in Table 4.5.

In order to understand the relationship between the arc-hybrid and arc-eager parsers, we

can re-interpret arc-eager’s right-arc transition as deciding that an arc should be added, but

delaying adding that arc until the dependent is reduced. The dependency tree will then be

built in the same way as for arc-hybrid, with the same shift-reduce sequence, the difference
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being that arc-eager makes the decision to add a right-arc when the dependent is shifted,

while arc-hybrid makes it when the dependent is reduced. Also note that a shift prediction

in arc-eager is implicitly deciding that a left-arc will have to be attached to the word shifted

when it is reduced. The spurious ambiguity in arc-eager is essentially the same as for

arc-hybrid.

The dynamic program for the arc-eager parser has to keep track of whether the stack

top is headed or not. Items have the form [lb, ic, j], where b and c are binary variables

indicating whether nodes l and i are headed, respectively. The deduction system, again

extending Kuhlmann et al. (2011) is defined as follows:

Goal:

[∅, 00, n]

Axioms:

[∅, 00, 1]

Deduction rules:

[lb, i,c, j]→ [ic, j0, j + 1] (shift)

[lb, ic, j]→ [ic, j1, j + 1] (right-arc)

[lb, ic, k][ic, k0, j]→ [lb, ic, j] (left-arc)

[lb, ic, k][ic, k1, j]→ [lb, ic, j] (reduce)

The inside algorithm for arc-eager parsing is given in Algorithm 6. While Algorithm 5

computes the probabilities incrementally for each sentence position, the inside scores are

computed in a different order in Algorithm 6. This enables a more efficient implementation,

specifically enabling more parallelization. (see Section 4.4.2). When β = n, the dynamic

program is restricted to allow only reduce transitions, which enforces the property that

nodes on the stack should already be headed. The Viterbi algorithm again follows the same

structure as the inside algorithm. For every item [lb, ic, j] the highest scoring splitting item

kd is recorded, where k is the splitting point. Headedness variable d indicates whether a

reduce or left-arc action was performed to reach the item.
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Algorithm 6 Inside algorithm for the arc-eager parser.
1: I[∅, 00, 1]← pgen(w1|h0)
2: for i = 0, . . . , n− 2 do
3: for j = i+ 1, . . . , n− 1 do
4: for c = 0, 1 do
5: I[ic, j0, j+1]← pact(sh|hi, c,hj)
6: ·pgen(wj+1|hi, c,hj, sh)
7: I[ic, j1, j+1]← pact(ra|hi, c,hj)
8: ·pgen(wj+1|hi, c,hj, ra)
9: end for

10: end for
11: end for
12: for gap = 2, . . . , n do
13: I[∅, 00, gap] =

∑gap−1
k=1 (I[∅, 00, k]I[00, k1, gap]

14: ·pact(re|hk, 1,hgap))
15: for i = 1, . . . , n− gap do
16: j = i+ gap
17: for c = 0, 1 do
18: for k = i+ 1, . . . , j − 1 do
19: if j = n then
20: T [k]← I[ic, k1, j]pact(re|hk, 1,hj)
21: else
22: T [k]← (I[ic, k0, j]pact(re|hk, 0,hj)
23: + I[ic, k1, j]pact(re|hk, 1,hj))
24: end if
25: end for
26: for l = 0, . . . , i− 1 do
27: for b = 0, 1 do
28: I[lb, ic, j]←

∑j−1
k=i+1 I[lb, ic, k]T [k]

29: end for
30: end for
31: end for
32: end for
33: end for
34: return I[∅, 00, n] + pact(re|h0, hn)
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4.4 Experiments

We aim to evaluate our recurrent generative models trained both with and without parsing

supervision. Similar to Chapter 3 we evaluate the models as both parsers and language

models. Our goals are to test whether the availability of unbounded contexts and exact

decoding leads to more accurate parsing, whether syntactic structure is beneficial for re-

current language models, and whether our models can learn reasonable syntactic structures

without supervision.

4.4.1 Setup

We use the same WSJ data and preprocessing as in Section 3.4. Our main supervised

experiments are based on SD dependencies, but we also report results on YM.

Our models are implemented in PyTorch,4 which constructs computation graphs dy-

namically. During training, sentences are shuffled for each epoch. For unsupervised learn-

ing we use mini-batches consisting of sentences of the same length.5 We base the hyper-

parameters of our models primarily on the “medium” language model of (Zaremba et al.,

2014): A two-layer LSTM with embeddings and hidden states size 650 with dropout of 0.5

on the RNN inputs and outputs. Weights are initialised randomly from the uniform distri-

bution over the range (−0.05, 0.05). Gradient norms are clipped (Pascanu et al., 2013) to

5.0. The SGD learning rate schedules are specified separately for the models below. For

training the discriminative baselines we use the Adam optimiser (Kingma and Ba, 2015).

4.4.2 Efficient implementation

We train and execute our models on a GPU. In order to achieve acceptable run-times for

our models, especially for unsupervised training, we need to utilise GPUs efficiently, which

requires maximising parallelism. We take some guidance from previous work on efficiently

implementing CKY parsers on GPUs (Yi et al., 2011; Johnson, 2011; Canny et al., 2013).

Our dynamic programs follow a similar structure, but in contrast to constituency parsers

4http://pytorch.org/
5To include all sentences in each epoch, some mini-batches may have less sentences than the given mini-

batch size.
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Model Greedy Exact

Arc-eager (uni) 79.90/77.67 81.37/79.08
Arc-eager (bi) 92.82/90.63 92.90/90.68
Arc-hybrid (uni) 84.12/81.54 84.21/81.61
Arc-hybrid (bi) 92.85/90.42 92.89/90.47

Table 4.6: PTB SD development set parsing results with discriminative RNN models, re-
porting unlabelled and labelled attachment scores (UAS/LAS). RNNs are either unidirec-
tional (uni) or bidirectional (bi).

with large grammars (Petrov et al., 2006), the grammar constant in our approach is negli-

gible.

We pre-compute transition and word emission probabilities before computing the en-

tries in the dynamic programming table. These computations are vectorised over all index

pairs. For Viterbi decoding (or running the inside algorithm at test time) the dynamic pro-

gram is executed on CPU, as we don’t have to build a computation graph for backpropa-

gation and all the neural network computations have already been performed. However for

unsupervised training the inside algorithm has to be implemented inside the computation

graph so that backpropagation can be performed with automatic differentiation. The naive

implementation has four nested loops for the O(n4) algorithm, which creates a bottleneck

in constructing the computation graphs and is prohibitively expensive for unsupervised

training. Vectorising the two inner loops (lines 16 to 31 in Algorithm 6) results in an or-

der of magnitude speed-up, which enables training in a reasonable time. We also avoid

recomputing values by factorising out the computation of T [k] (lines 19-23). Finally, the

computation is batched across sentences of the same length, which enables us to maximise

the GPU throughput.

For supervised training we also perform batch processing: After the sentences are en-

coded with an RNN, we extract the inputs to the transition, word and relation prediction

models across the batch, and then perform the neural network computations in parallel.

The supervised models trains in about 3 minutes per epoch.
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Model UAS/LAS

Kiperwasser and Goldberg (2016) 93.2/91.2

Arc-eager 93.26/91.03
Arc-hybrid 93.29/90.83

Table 4.7: PTB test set parsing results with discriminative bidirectional RNN models.

4.4.3 Supervised parsing

Discriminative parsing We train discriminative baselines (Table 4.6) using the same fea-

ture space as the generative models, therefore also enabling exact decoding. Discrimina-

tive models are trained with Adam (Kingma and Ba, 2015) with an initial learning rate of

0.0001. Both unidirectional and bidirectional RNNs can be used as encoder. We see that

the bidirectional encoder is crucial for accuracy. Exact decoding is only marginally more

accurate than greedy decoding (although it is of more benefit for the less accurate unidi-

rectional arc-eager model). This is further evidence of the label bias problem discussed in

Section 2.4. Andor et al. (2016) similarly showed that a locally normalised model with-

out lookahead features cannot obtain good performance even with beam-search (81.35%

UAS), while their globally normalised model can reach close to optimal performance with-

out look-ahead.

The arc-hybrid model performs better than arc-eager with the unidirectional encoder.

A possible explanation for this is that the arc-eager model makes right-arc attachment de-

cisions earlier in the transition sequence than arc-hybrid, which means that it has access

to less context to condition those predictions on. When arc-eager decides to shift rather

than right-arc, it is also implicitly deciding that the stack top word should become the left

dependent of some future word which has not been observed yet.

The performance of our implementation is on par with that of the arc-hybrid transition-

based parser of Kiperwasser and Goldberg (2016) (Table 4.7), despite their model using

more features, POS tags, externally pre-trained word embeddings, dynamic oracle training

and a margin-based loss function. Shi et al. (2017) showed that globally normalised training

improves the accuracy of this class of discriminative models.
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Model Greedy Exact

Arc-eager buffer-next 80.79/78.56 87.34/84.84
Arc-hybrid buffer-next 85.25/82.83 91.19/88.66
Arc-Hybrid stack-next 56.98/52.22 82.77/78.01

Table 4.8: PTB SD development set parsing results with supervised generative models,
reporting unlabelled and labelled attachment scores (UAS/LAS).

Model UAS/LAS

HPYP GenDP 87.9/86.2
FFNN GenDP 90.10/87.74
Titov and Henderson (2007) 91.43/89.02

Arc-eager 88.20/85.91
Arc-hybrid 91.01/88.54

Table 4.9: PTB SD test set parsing results with supervised generative models. Beam-search
results are reported for the models where exact decoding is not possible.

Generative parsing The supervised generative parsers are trained with batch size 16, with

an initial SGD learning rate of 1.0, which is divided by 1.7 for every epoch after 6 initial

epochs.

Our best recurrent generative model outperforms the Markov generative models pro-

posed in Chapter 3 (Table 4.9). In contrast to the discriminative models, here exact de-

coding is crucial to performance. The generative models are much more accurate than the

unidirectional discriminative models with Viterbi decoding, showing that the word predic-

tion model does benefit parsing accuracy, which would not have been the case if that model

only depended on the previous word.

The arc-hybrid model is more accurate than arc-eager, as was the case for the unidi-

rectional discriminative models. Global search and the generative model does not seem

to compensate for the arc-eager model’s property of conditioning on less context when

making right-arc decisions. We also see that the buffer-next model is much more accu-

rate than the stack-next generative formulation, which can be explained by the fact that the

stack-next model cannot condition on the buffer word when making transition predictions.

The exact decoding algorithm for this model is also actually faster than the most accu-

rate model with particle filtering decoding: The arc-hybrid model parses 7.4 sentences per
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Model UAS/LAS

HPYP GenDP 88.47/86.13
FFNN GenDP 90.16/88.83
Titov and Henderson (2007) 90.75/89.29

Arc-eager 87.61/86.36
Arc-hybrid 90.71/88.68

Table 4.10: PTB YM test set parsing results with supervised generative models.

Model Perplexity

Interpolated Kneser-Ney 5-gram 170.09
Sequential LSTM (unbatched) 118.69
Sequential LSTM (batched) 100.67

FFNN GenDP 138.62
RNNG (Dyer et al., 2016) 105.2
RNNG (Kuncoro et al., 2017) 101.2

Supervised (SD) shift-reduce buffer-next 111.53
Supervised (SD) shift-reduce stack-next 107.61

Unsupervised shift-reduce stack-next 125.20

Table 4.11: Language modelling perplexity results on the PTB parsing test set.

second, against 4 sentences per second for the particle filtering decoder.

For further comparison we also report results on YM dependencies (Table 4.10). For

this representation our arc-hybrid model is on par with the best previous generative parser

(Titov and Henderson, 2007). The arc-eager model again performs worse.

4.4.4 Language modelling

We apply both the supervised and unsupervised models to language modelling. The su-

pervised models are trained as arc-hybrid parsers; for language modelling arc labels and

directionality is not predicted. The unsupervised model is trained with only shift and reduce

transitions as latent variable.

We evaluate language models with a sentence i.i.d. assumption, similar to the setup

in Chapter 3. In contrast, standard evaluation setups for RNN language models typically

treat the entire corpus as single sequence. To evaluate the consequence of the sentence

independence assumption, we trained a model on the most widely used PTB language
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modelling setup (Chelba and Jelinek, 2000; Mikolov et al., 2011), which uses a different

training/testing split and preprocessing which limits the vocabulary to 10k. Our baseline

LSTM obtains 92.71 test perplexity on this setup, against 78.4 of Zaremba et al. (2014),

which uses the same hyperparameters (we use a batch-size of 16) without a sentence i.i.d.

assumption.

Results are reported in Table 4.11. As baselines without syntactic structure we use the

interpolated Kneser-Ney n-gram model and standard (sequential) LSTMs, trained with or

without batching (mini-batch size 16). The initial learning rate is 1.0 for the batched model

and 0.1 for the unbatched model.

The LSTM baselines already outperform our best syntactic feed-forward neural model

from Chapter 3. We see that there is a significant difference between training with or

without mini-batching for the baseline; similarly our model’s perplexities also improve

when trained with batching. The batched baseline trained performs slightly better than

Recurrent Neural Network Grammars (RNNG) (Dyer et al., 2016; Kuncoro et al., 2017), a

constituency syntax-based RNN language model trained without batching.6

The results show that our syntactic language models do not achieve better performance

than the LSTM baseline. We experimented with different dependency representations on

the development set, including SD, YM and Universal Dependencies (Nivre et al., 2016)

. In contrast to the results of our Markov syntactic models we found little difference in

language modelling performance between the dependency representations. The stack-next

generative model has lower perplexity than the buffer-next model, which supports the hy-

pothesis that its conditioning contexts are more informative, as they are syntactically more

relevant.

Recurrent Neural Network Grammars (RNNG) (Dyer et al., 2016; Kuncoro et al., 2017)

uses importance sampling to estimate perplexity, as exact inference is intractable. The ad-

vantage of RNNG is that it is able to compute a compositional representation of the stack

and the partially constructed parse tree, while our model can only make use of the position

on top of the stack and otherwise has to rely on the sequentially computed RNN represen-

tations. The disadvantage of RNNG is that inference can only be performed once the entire

6Our experimental setup is the same as Dyer et al. (2016), except for a minor implementation difference
in unknown word clustering; Dyer et al. (2016) reports 169.31 perplexity on the same IKN model.
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Model U-UAS P R F1

Right-branching 44.72 46.05 22.59 30.31
Shift-reduce 24.25 19.71 25.74 22.33
Arc-eager 28.34 15.43 17.38 16.35

Table 4.12: Unsupervised parsing results: Undirected UAS and unlabelled bracket preci-
sion, recall and F1.

sentence has been observed, as the proposal distribution is a discriminative parser. Particle

filtering inference, as we proposed in Chapter 3, does not suffer from this limitation. The

inference methods of our models in this (and the previous) chapter are able to estimate next

word probabilities from partially observed sequences, which RNNG is not able to do.

4.4.5 Unsupervised learning

We perform unsupervised learning with the shift-reduce and arc-eager models. The shift-

reduce model learns transition sequences which can be interpreted as generating right-arc

only dependency trees. The arc-eager model can learn full dependency trees – however in

practice we found that it rarely predicts left-arcs. The models are trained with SGD with

batch size 4, initial learning rate 1.0 and a decay factor 2.0, with a mini-batch size of 8. In

order to restrict training time we limit the length of training sentences to 40 by cropping

(rather than excluding) longer WSJ sentences.

Language modelling results show that the models have worse perplexity than the su-

pervised models and LSTM baselines (Table 4.11). The models are hard to optimise and

training time is longer than for the supervised models, which makes finding good hyper-

parameters a challenge. The results seem to indicate that the current model does not have

a strong enough inductive bias to learn parse trees (or stack transition sequences) which

enable it to improve language modelling performance over sequential LSTMs.

We evaluated the parse trees learned by the model against gold standard trees. The

accuracy of the trees are worse than a right-branching baseline (where every word is the

dependent of the word to its left) on two metrics (Table 4.12). The first metric is undirected

unlabelled attachment score (U-UAS). The second is based on the constituent structures

corresponding to the dependencies learned: The dependency trees (gold and predicted) are
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ROOT Another $ 20 billion would be raised through treasury bonds

Figure 4.2: Sentence with dependencies induced by the unsupervised model.

converted to unlabelled bracket structures and evaluated with the PARSEVAL metric for

constituency trees (Black et al., 1991), following Noji et al. (2016).

The recall of the shift-reduce model is slightly higher than the right-branching baseline,

but precision is much lower. Arc-eager performs better than shift-reduce on undirected

UAS, but worse on the bracket structure evaluation. The trees predicted by the arc-eager

model have a very low percentage of left-arcs, showing that the model is not able to distin-

guish adequately between left- and right-arcs.

Qualitative analysis shows that overall the model did not succeed in learning infor-

mative, non-trivial tree structures – in most cases it learns to attach words either to the

immediate previous word or to the root. This seems to indicate that the memorisation abil-

ity of the LSTM is too strong to enable the model to learn to rely on the parse structure

to make next word predictions. However unsupervised dependency parsers usually require

elaborate initialisation schemes or biases to produce non-trivial trees (Klein and Manning,

2004; Spitkovsky et al., 2010a; Bisk and Hockenmaier, 2015). An example dependency

tree predicted by the unsupervised model is given in Figure 4.2.

4.5 Conclusion

We proposed a new framework for generative models of syntactic structure based on recur-

rent neural networks. We presented efficient algorithms for training these models with or

without supervision, and to apply them to make online predictions for language modelling

through exact marginalisation. Results show that the model obtains state-of-the-art per-

formance among generative models for dependency parsing, although comparative models

used much more complex feature spaces. However the models do not obtain better intrinsic
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language modelling performance than a vanilla RNN on a standard dataset. While the ad-

vantage of the models in this chapter is that they enable exact inference, the restrictions that

this imposes (conditioning only on the top of the stack, without syntax-based composition)

might be too strong to enable useful unsupervised learning.
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Chapter 5

Neural Semantic Graph Parsing

Parsing sentences to linguistically-expressive semantic representations is a key goal of Nat-

ural Language Processing; yet statistical parsing has focussed predominantly on bilexical

dependencies. In this chapter we develop fast, robust and accurate models to parse lin-

guistically deep representations. The main representation we use is Minimal Recursion

Semantics (MRS) (Copestake et al., 1995, 2005), which serves as the semantic repre-

sentation of the English Resource Grammar (ERG) (Flickinger, 2000). Existing parsers

for full MRS are grammar-based, performing disambiguation with a maximum entropy

model (Toutanova et al., 2005; Zhang et al., 2007); this approach has high precision but in-

complete coverage. In the following example, sentence 1 cannot be parsed by the grammar,

as it does not account for how the prepositional phrase from some points of view should be

attached. On the other hand, sentence 2 is acceptable:

1. But this is splendid, really unique from some points of view.

2. But this is a splendid, really unique point of view.

We propose a neural encoder-decoder transition-based parser which is the first full-

coverage semantic graph parser for MRS. The model architecture uses stack-based embed-

ding features, predicting graphs jointly with unlexicalised predicates and their token align-

ments. We do not assume access to the underlying ERG or syntactic structures from which

the MRS analyses were originally derived. Instead we develop parsers for two graph-based

conversions of MRS, Elementary Dependency Structure (EDS) (Oepen and Lønning, 2006)

and Dependency MRS (DMRS) (Copestake, 2009), of which the latter is inter-convertible

with MRS.
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Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is a graph-based se-

mantic representation that shares the goals of MRS. Aside from differences in the choice of

which linguistic phenomena are annotated, MRS is a compositional representation explic-

itly coupled with the syntactic structure of the sentence, while AMR does not assume com-

positionality or alignment with the sentence structure. Recently a number of AMR parsers

have been developed (Flanigan et al., 2014; Wang et al., 2015a; Artzi et al., 2015; Damonte

et al., 2017), but corpora are still under active development and low inter-annotator agree-

ment places an upper bound of 83% F1 on expected parser performance (Banarescu et al.,

2013). We apply our model to AMR parsing as well, proposing heuristics to deal with the

underspecification of AMR parses relative to MRS-based graphs.

Our parser is based on a transition system for semantic graphs. However, instead of

generating arcs over an ordered, fixed set of nodes (the words in the sentence), we generate

the nodes and their alignments jointly with the transition actions. One of the main reasons

for the prevalence of bilexical dependencies and tree-based representations is that they

can be parsed with efficient and well-understood algorithms. However, one of the key

advantages of deep learning is the ability to make predictions conditioned on unbounded

contexts encoded with RNNs; this enables us to predict more complex structures without

increasing algorithmic complexity.

5.1 Semantic Graphs

We define a common framework for semantic graphs in which we place both MRS-based

graph representations (DMRS and EDS) and AMR, defined in this section. Sentence mean-

ing is represented with rooted, labelled, directed graphs (Kuhlmann and Oepen, 2016).1

Examples graphs are shown in Figures 5.1 to 5.3. Node labels are referred to as predi-

cates (concepts in AMR) and edge labels as arguments (relations in AMR). In addition

constants, a special type of node modifiers, are used to denote the string values of named

entities and numbers (including date and time expressions). Every node is aligned to a

token or a continuous span of tokens in the sentence the graph corresponds to.

1We do not assume that the graphs are connected or acyclic.
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Figure 5.1: Example Elementary Dependency Structure (EDS) graph. The alignments are
indicated, alongside the lemmas of surface predicates and constants.

Figure 5.2: Example Dependency Minimal Recursion Semantics (DMRS) graph.
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Figure 5.3: Example Abstract Meaning Representation (AMR) graph. Alignments are
obtained with an automatic aligner.

5.1.1 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is a framework for computational semantics that can

be used for parsing or generation (Copestake et al., 2005). Instances and eventualities

are represented with logical variables. Predicates take arguments with labels from a small

fixed set of roles. Arguments are either logical variables or handles, designated formalism-

internal variables. Handle equality constraints support scope underspecification; multiple

scope-resolved logical representations can be derived from one MRS structure. A predicate

corresponds to its intrinsic argument and is aligned to a character span of the (untokenised)

input sentence. Predicates representing named entities or numbers are parameterised by

strings. Quantification is expressed through predicates that bound instance variables, rather

than through logical operators such as ∃ or ∀. MRS was designed to be integrated with

feature-based grammars such as Head-driven Phrase Structure Grammar (HPSG) (Pol-

lard and Sag, 1994) or Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982).

MRS has been implemented in the English Resource Grammar (ERG) (Flickinger, 2000),

a broad-coverage high-precision HPSG grammar.
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Oepen and Lønning (2006) proposed Elementary Dependency Structure (EDS), a con-

version of MRS to variable-free dependency graphs which drops scope specification. Copes-

take (2009) extended this conversion to avoid information loss, primarily through richer

edge labels. The resulting representation, Dependency MRS (DMRS), can be converted

back to the original MRS or used directly in MRS-based applications (Copestake et al.,

2016). We are interested in developing parsers for both of these representations: While

EDS is more interpretable as an independent semantic graph representation, DMRS can be

related back to underspecified logical forms.2 A bilexical simplification of EDS has previ-

ously been used for semantic dependency parsing (Oepen et al., 2014, 2015). Figure 5.1

illustrates an EDS graph, and Figure 5.2 a DMRS graph.

MRS makes an explicit distinction between surface and abstract predicates (by con-

vention surface predicates are prefixed by an underscore). Surface predicates consist of

a lemma followed by a coarse part-of-speech tag and an optional sense label. Predicates

absent from the ERG lexicon are represented by their surface forms and POS tags. We

convert the character-level predicate spans given by MRS to token-level spans for parsing

purposes, but the representation does not require gold tokenisation. Surface predicates usu-

ally align with the span of the token(s) they represent, while abstract predicates can span

longer segments. In full MRS every predicate is annotated with a set of morphosyntactic

features, encoding for example tense, aspect and number information; we do not currently

model these features.

Previous parsers Prior work for MRS parsing predominantly predicts structures in the

context of grammar-based parsing, where sentences are parsed to HPSG derivations con-

sistent with the grammar, in this case the ERG (Flickinger, 2000). The nodes in the deriva-

tion trees are feature structures, from which MRS is extracted through unification. This

approach fails to parse sentences for which no valid derivation is found. Even though

the ERG is a large, broad-coverage grammar, coverage is around 85% on newspaper text,

and lower on less formal types of text. Maximum entropy models are used to score the

derivations in order to find the most likely parse (Toutanova et al., 2005). This approach is

implemented in the PET (Callmeier, 2000) and ACE3 parsers.
2DMRS graphs may have undirected edges.
3http://sweaglesw.org/linguistics/ace/
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There have been some efforts to develop robust MRS parsers. One proposed approach

learns a PCFG grammar to approximate the HPSG derivations (Zhang and Krieger, 2011;

Zhang et al., 2014). MRS is then extracted with robust unification to compose potentially

incompatible feature structures, although that still fails for a small proportion of sentences.

The model is trained on a large corpus of Wikipedia text parsed with the grammar-based

parser. Ytrestøl (2012) proposed a transition-based approach to HPSG parsing that pro-

duces derivations from which both syntactic and semantic (MRS) parses can be extracted.

The parser has an option not to be restricted by the ERG. However, neither of these ap-

proaches have results available that can be compared directly to our setup, or generally

available implementations.

5.1.2 Abstract Meaning Representation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013) graphs can be repre-

sented in the same framework, despite a number of linguistic differences with MRS. Some

information annotated explicitly in MRS is latent in AMR, including alignments and the

distinction between surface (lexical) and abstract concepts.

AMR predicates are based on PropBank (Palmer et al., 2005), annotated as lemmas plus

sense labels, but they form only a subset of concepts. Other concepts are either English

words or special keywords, corresponding to overt lexemes in some cases but not others.

An example AMR graph is shown in Figure 5.3.

AMR makes no assumptions about the relation between an AMR and the structure of

the sentence it represents: The representation is not assumed to have any relation to the

sentence syntax, no alignments are given and no distinction is made between concepts that

correspond directly to lexemes in the input sentences and those that don’t. This under-

specification creates significant challenges for training an end-to-end AMR parser, which

are exacerbated by the relatively small sizes of available training sets. Consequently most

AMR parsers are pipelines that make extensive use of additional resources.

Previous parsers Most AMR parsers make assumptions particular to AMR and rely on

extensive external (AMR-specific) resources. Therefore they cannot be applied directly to

more general structures such as MRS-based graphs.
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Flanigan et al. (2014) proposed a two-stage parser that first predicts concepts or sub-

graphs corresponding to sentence segments, and then parses these concepts into a graph

structure. However MRS has a large proportion of abstract nodes which cannot be predicted

from short segments and interact closely with the graph structure. Wang et al. (2015a,b)

proposed a custom transition system for AMR parsing that converts dependency trees to

AMR graphs, relying on assumptions on the relationship between these. Pust et al. (2015)

proposed a parser based on syntax-based machine translation (MT), while AMR has also

been integrated into CCG Semantic Parsing (Artzi et al., 2015; Misra and Artzi, 2016).

Neural encoder-decoders have been proposed for AMR parsing, but reported accuracies

are well below the state-of-the-art (Barzdins and Gosko, 2016), even with sophisticated pre-

processing and categorization (Peng et al., 2017b). Foland Jr and Martin (2016) proposed a

pipeline consisting of multiple LSTMs, while Damonte et al. (2017) introduced a transition-

based parser based on neural network classifiers inside a feature- and resource-rich parser.

These parsers perform competitively with state-of-the-art approaches.

5.1.3 Other representations

There are a number of other linguistically-expressive representations with a semantic com-

ponent and at least partly overlapping goals with the representations we work with in this

chapter. The Combinatory Categorial Grammar (CCG) (Steedman, 2000) annotation of

the PTB (Hockenmaier and Steedman, 2007) has a semantic bilexical dependency rep-

resentation, while a line of research uses CCG to assign logical expressions in the con-

text of semantic parsing of questions for query execution (Zettlemoyer and Collins, 2005;

Kwiatkowski et al., 2010; Artzi and Zettlemoyer, 2013). The Prague Dependency Tree-

bank (Böhmová et al., 2003) has a tectogrammatical layer which is a rich semantic repre-

sentation. In the context of HPSG the Enju grammar (Miyao and Tsujii, 2008) is based

on an automatic conversion of PTB constituency trees, and bilexical predicate-argument

structures can be derived from the annotations. While the Enju parser has very high cover-

age (97% of PTB sentences (Matsuzaki et al., 2007)), the semantic structures produced are

considerably less informative than those given by MRS in the ERG. Universal Conceptual

Cognitive Annotation (UCCA) (Abend and Rappoport, 2013) is another semantic repre-

sentation which, similar to AMR, is not coupled with syntactic representation, and has the
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:root( <2> _v_1
:ARG1( <1> person

:BV-of( <1> every_q ) )
:ARG2 <4> _v_1

:ARG1*( <1> person
:ARG2( <5> named_CARG

:BV-of ( <5> proper_q ) ) )

Figure 5.4: A depth-first traversal of the EDS graph in Figure 5.1 (using unlexicalised
predicates) that can be predicted incrementally.

goal to be cross-lingually applicable. See Abend and Rappoport (2017) for a recent review

of semantic representations.

5.2 Incremental prediction of graph traversals

The first approach we consider to make graph parsing amenable to incremental prediction is

to linearise graphs as the pre-order traversal of their spanning trees, starting at a designated

root node (see Figure 5.4). Vinyals et al. (2015b) showed that constituency parsing can be

performed with neural sequence-to-sequence models by predicting nested bracketing struc-

tures as output sequences. This approach was also applied to logical form prediction (Dong

and Lapata, 2016; Jia and Liang, 2016).

While these approaches deal with tree structures, nodes in semantic graphs may have

multiple heads. In AMR datasets, graphs are represented as spanning trees with designated

root nodes. Edges whose direction in the spanning tree is reversed are marked by adding

“-of” to the argument label. Edges not included in the spanning tree (called reentrancies)

are indicated by adding dummy nodes pointing back to the original nodes. Recent work

has also approach AMR parsing as a sequence prediction task (Barzdins and Gosko, 2016;

Peng et al., 2017b; Konstas et al., 2017), using variants of this representation.

Our sequential representation (linearisation) is similar, although slightly different to-

kenisation choices are made. Nodes are identified through their concepts rather than ex-

plicit node identifiers, as in AMR datasets. Constants are also treated as nodes. Reentrancy

edges are marked with *. Our potentially lossy representation represents these edges by

repeating the dependent node labels and alignments. During post-processing reentrancies
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:focus( want-01
:ARG0( everybody )
:ARG1( meet-02

:ARG0*( everybody )
:ARG1( person

:name( name
:op1( "John" ) ) ) ) )

Figure 5.5: Standard linearised representation of the AMR in Figure 5.3.

are recovered heuristically by finding the closest nodes in the sequential representation with

the same concepts. The alignment does not influence the node ordering.

We propose two approaches for predicting surface predicates. In the first representation

(lexicalised) the full predicate is always predicted. The second (delexicalised) factorises

lemmas out of surface predicates: Candidate lemmas are predicted separately for input

tokens; surface predicates are represented only by their sense labels. The predicted align-

ments are used to recover the full surface predicates.

For MRS we extract a dictionary mapping words to lemmas from the ERG lexicon.

Candidate lemmas are predicted using this dictionary or, where no dictionary entry is avail-

able, with a lemmatiser. The same approach is applied to predict constants, along with

additional normalisations such as mapping numbers to digit strings.

Multi-word expressions are handled as follows: Where the lemma of a predicate is a

multi-word expression we assume that the first word in the expression will correspond to

the lemma of the token corresponding to the start span of the token.4 Our delexicalisation

then lets the remaining words in the expression be part of the predicate predicted by the

parser (along with the sense label). This approach allows us to deal with ambiguity in

recognizing whether a substring is a multi-word expression or not.

AMR graphs do not distinguish between surface and abstract concepts, and does not

include alignments. Our incremental representation that does not add any additional infor-

mation is referred to as standard. An example is given in Figure 5.5.

We propose lexicalised and delexicalised representations for AMR by heuristically clas-

sifying concepts as surface or abstract, similar to MRS predicates. We assume that each

4This fails for a very small proportion of predicates, the most notable example being the predicate with
the lemma “in order to” which corresponds to the token “to.”
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:focus( <2> -01
:ARG0( <1> -u )
:ARG1( <4> -02

:ARG1*( <1> -u )
:ARG2( <5> person

:name( <5> name
:op1( <5> CONST ) ) ) ) )

Figure 5.6: Delexicalised linearisation, with alignments, of the AMR in Figure 5.3.

word in a sentence aligns to at most one lexical node in its AMR graph. Where multiple

nodes are aligned to the same token, usually forming a subgraph, the lowest element is

taken to be the lexical concept. Surface concepts are typically English words in lemma

form, which can be predicted with high accuracy from the words they align to. In our

linearisations concepts are annotated as being either surface or abstract.

Every constant is replaced with a placeholder CONST token; the constant string is re-

covered as a post-processing step through the predicted token alignment. The delexicalised

representation factorises lemmas out of the linearisation so that they are represented by

their alignments and sense labels, e.g. -01 for predicates and -u for other concepts. See

Figure 5.6 for an example.

5.3 Transition-based parsing

Semantic graphs (e.g. Figure 5.1) are dependency graphs whose nodes are predicates

aligned to sentence tokens. Transition-based parsing (Nivre, 2008) has been used exten-

sively to predict dependency graphs incrementally. We apply a variant of the arc-eager

transition system that has been proposed for graph (as opposed to tree) parsing (Sagae and

Tsujii, 2008; Titov et al., 2009; Gómez-Rodrı́guez and Nivre, 2010) to derive a transition-

based parser for semantic graphs. Here we need to generate the nodes incrementally as the

transition system proceeds, conditioning the prediction on the given sentence. Damonte

et al. (2017) proposed an arc-eager AMR parser, but their transition system is more nar-

rowly restricted to AMR graphs.

Our transition system is based on the arc-eager graph parser (Section 2.3.2). Here we

extended the system defined for planar graphs to arbitrary non-planar graphs. To predict
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Action Stack Buffer Arc added

init(1, person) [ ] (1, 1, person) -
sh(1, every q) [(1, 1, person)] (2, 1, every q) -
la(BV) [(1, 1, person)] (2, 1, every q) (2, BV, 1)
sh(2, v 1) [(1, 1, person), (2, 1, every q)] (3, 2, v 1) -
re [(1, 1, person)] (3, 2, v 1) -
la(ARG1) [(1, 1, person)] (3, 2, v 1) (3, ARG1, 1)
sh(4, v 1) [(1, 1, person), (3, 2, v 1)] (4, 4, v 1) -
ra(ARG2) [(1, 1, person), (3, 2, v 1)] (4, 4, v 1) (3, ARG2, 4)
re [(1, 1, person)] (4, 4, v 1) -
la(ARG1) [(1, 1, person)] (4, 4, v 1) (4, ARG1, 1)
re [ ] (4, 4, v 1) -
sh(5, named CARG) [(4, 4, v 1)] (5, 5, named CARG) -
ra(ARG2) [(4, 4, v 1)] (5, 5, named CARG) (4, ARG2, 5)
re [ ] (5, 5, named CARG) -
sh(5, proper q) [(5, 5, named CARG)] (6, 5, proper q) -
sh(5, proper q) [(5, 5, named CARG)] (6, 5, proper q) -
la(BV) [(5, 5, named CARG)] (6, 5, proper q) (6, BV, 5)
re [ ] (6, 5, proper q) -
sh(EOS) [(6, 5, proper q)] - -

Figure 5.7: Transition sequence for parsing the graph in Figure 5.1. The transitions are
shift (sh), reduce (re), left arc (la) and right arc (ra). The action taken at each step is
given, along with the state of the stack and buffer after the action is applied, and any arcs
added. Shift transitions generate predicates placed on the buffer and their alignments to
words in the sentence. Items on the stack and buffer have the form (node index, alignment,
predicate label), and arcs are of the form (head index, argument label, dependent index).
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crossing arcs we add a transition, called cross-arc, which adds an arc between the buffer

and an arbitrary node on the stack (excluding the stack top and root node), whose stack

position is also predicted. Additionally we define a special root transition that adds the root

arc to the top of the buffer (to be executed just before the node is shifted). This is motivated

by the observation that arcs from the root node to the focus (semantic head) of the sentence

are often crossing. For DMRS parsing a transition to add undirected arcs is defined (this is

possible due to the insensitivity of the rest of the transition system to directionality).

The transition system jointly predicts the predicate labels and alignments of nodes that

are generated by shift transitions. Shift predicts the predicate and the start of the aligned

span of the next node on the buffer, and reduce predicts the span end of the popped node.

A node’s span end alignment often covers the phrase that it heads (e.g. for quantifiers); this

gives a natural interpretation to the reduce action.

To derive an oracle for this transition system, it is first necessary to determine the order

in which the nodes are generated. We consider two approaches. The first ordering is

obtained by performing an in-order traversal of the spanning tree, where the node order is

determined by the alignment. In the resulting linearisation the only potentially non-planar

arcs are reentrancies. The second approach results in a monotone (non-decreasing) order

with respect to the alignments, while following the in-order ordering for nodes with the

same alignment.

After determining the node order, we use the arc-eager oracle for planar graphs (Gómez-

Rodrı́guez and Nivre, 2010). The oracle is extended to predict crossing edges using the

cross-arc transition as follows: Suppose that a node a is on top of the stack and all depen-

dencies (either left or right) between the a and the nodes that follow it in the graph traversal

have been added. It is not possible for the planar transition actions to add arcs between

the node and other nodes on the stack. If there are dependencies between that node and

nodes to its left which have not yet been added, then those nodes have to be on the stack (as

the oracle only reduce nodes once all their dependents have been added); therefore in that

case the oracle predicts cross-arc to add those arcs. Figure 5.7 shows an example transition

sequence together with the stack and buffer after each step.
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5.4 Encoder-decoder models

We parse sentences to their meaning representations by incrementally predicting seman-

tic graphs together with their alignments. Let w = w1, w2, . . . , wn be a tokenised En-

glish sentence, s = s1, s2, . . . , sm a sequential representation of its graph derivation and

a = a1, a2, . . . , am an alignment sequence consisting of integers in the range 1, . . . , n.

This approach is applicable to both the top-down graph linearisation and transition-based

parsing, although we propose one architecture which is designed specifically for transition-

based parsing by modelling its parsing configuration.

We model the conditional distribution

p(s, a|w) =
m∏
j=1

p(aj|(a, s)1:j−1,w)p(sj|a1:j, s1:j−1,w). (5.1)

The end-of-span alignments a(e) are predicted following every reduce action or close

bracket. The notion of modelling alignments in sequence transduction models can be traced

back to the seminal work of Brown et al. (1993) on statistical machine translation.

5.4.1 Sentence encoder

The sentence w is encoded with a bidirectional RNN. We use the standard LSTM architec-

ture. For every token w we embed its word, POS tag and named entity (NE) tag as vectors

xw, xt and xn, respectively.

The embeddings are concatenated and passed through a linear transformation

g(w) = W (e)[xw;xt;xn] + b(e), (5.2)

such that g(w) has the same dimension as the LSTM cell. Every input position i is repre-

sented by a hidden state hi, which is the concatenation of its forward and backward LSTM

state vectors.5

5.4.2 Hard attention decoder

For the arc-eager model, aj corresponds to the alignment of the node of the buffer after

action sj is executed. The distribution of sj is over all transitions and predicates (corre-

sponding to shift transitions), predicted with a single softmax.
5Here h includes both the hidden and memory vector of the LSTM state.
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The parser output is predicted by an RNN decoder. Let dj be the decoder hidden state

at output position j. We initialise d0 with the final state of the backward encoder.

Alignments are predicted with a pointer network (Vinyals et al., 2015a). The pointer

network is a sequence-to-sequence RNN architecture in which the output sequence con-

sistent of indexes (pointers) to the input sequence. The pointer logits are computed with

an MLP scoring the decoder hidden state against each of the encoder hidden states (for

i = 1, . . . , n),

uij = wT tanh(W (ah)hi + W (ad)dj). (5.3)

The alignment distribution is then estimated as

p(aj = i|a1:j−1, s1:j−1,w) = softmaxi(uj). (5.4)

To predict the next transition sj , the output vector oj is computed conditioned on the

encoder state vector haj , corresponding to the alignment:

oj = W (os)dj + W (oh)haj (5.5)

vj = R(d)oj + b(d), (5.6)

where R(d) and b(d) are the output representation matrix and bias vector, respectively.

The transition distribution is then given by

p(sj|a1:j, s1:j−1,w) = softmaxsj(vj). (5.7)

Let e(sj) be the embedding of decoder symbol sj . The RNN state at the next time step

is computed as

rj+1 = W (de)e(sj) + W (dh)haj (5.8)

dj+1 = RNN(rj+1,dj). (5.9)

The end-of-span alignment a(e)j for MRS-based graphs is predicted with another pointer

network. The end alignment of a token is predicted only when a node is reduced from the

stack, therefore this alignment is not observed at each time step; it is also not fed back into

the model.

Our alignment model can be seen as a neural version of IBM model 2 (Brown et al.,

1993), in which the alignment distribution depends only on the output symbol position
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and sentence length. In our neural model the alignment distribution depends on the RNN

decoder state as well as all the input words, while the output symbol distribution depends on

the RNN representation of the aligned word as well as the decoder RNN state. In contrast

to machine translation, we have supervised alignments available to train on.

The hard attention approach can be contrasted to soft attention, which learns to attend

over the input without supervision. The attention is computed similarly as

αij = softmaxi(uj). (5.10)

However instead of making a hard selection, a weighted average over the encoder vec-

tors is computed as

qj =
i=n∑
i=1

αijhi. (5.11)

This vector is used for prediction and fed to the next time step, instead of haj .

Another alternative is to combine hard and soft attention by using both qj and haj for

prediction and feeding either qj or both into dj+1.

5.4.3 Stack-based architecture

We extend the hard attention model to include features based on the transition system stack.

These features are embeddings from the bidirectional RNN encoder, corresponding to the

alignments of the nodes on the buffer and on top of the stack. This approach is similar to

the features proposed by Kiperwasser and Goldberg (2016) and Cross and Huang (2016)

for dependency parsing, although they do not use RNN decoders.

In order to implement these features the layer that computes the output vector is ex-

tended to

oj = W (od)dj + W (oh)haj + W (ot)hst0 , (5.12)

where st0 is the sentence alignment index of the element on top of the stack. The input

layer to the next RNN time step is similarly extended to

rj+1 = W (de)e(sj) + W (dh)hb + W (ds)hst0 , (5.13)

where b is the buffer alignment after sj is executed.
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Our implementation of the stack-based model enables batch processing in static com-

putation graphs, similar to Bowman et al. (2016). We maintain a stack of alignment indexes

for each element in the batch, as well as the buffer alignment indexes. These data structures

are updated inside the computation graph after each parsing action. The challenge lies in

representing these structures as fixed-sized vectors or tensors and implementing (batched)

operations on them. The advantage of this approach is that it enables mini-batch SGD

training as well as efficient batch decoding.

5.4.4 Decoding

We perform greedy decoding. For the stack-based architecture we ensure that if the stack is

empty, the next transition has to be a shift. For the other models we ensure that the output

is well-formed during post-processing by robustly skipping over out-of-place symbols or

inserting missing ones. For the top-down AMR models, repeated occurrences of sibling

subtrees are removed when equivalent up to the argument number of relations.

5.5 Graph banks and preprocessing

5.5.1 MRS

The MRS dataset we use for our experiments is DeepBank (Flickinger et al., 2012), an

HPSG and MRS annotation of the Wall Street Journal (WSJ) corpus. We use version 1.1,

corresponding to ERG 12146, and follow the suggested split of sections 0 to 19 as training

data, 20 for development and 21 for testing. The gold-annotated training data consists of

35,315 sentences. We use the LOGON environment7 and the pyDelphin library8 to extract

DMRS and EDS graphs.

DeepBank was developed following an approach known as dynamic treebanking (Oepen

et al., 2004) that couples treebank annotation with grammar development, in this case of

the ERG. This approach has been shown to lead to high inter-annotator agreement: 0.94

against 0.71 for AMR (Bender et al., 2015). The disadvantage is that parses are only pro-

vided for sentences for which the ERG has an analysis, and that the analysis is acceptable

6http://svn.delph-in.net/erg/tags/1214/
7http://moin.delph-in.net/LogonTop
8https://github.com/delph-in/pydelphin
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to the annotator. This means that we cannot evaluate parsing accuracy for sentences which

the ERG cannot parse (approximately 15% of the original corpus).

We use the Stanford CoreNLP toolkit (Manning et al., 2014) to tokenise and lemmatise

sentences, and to perform Parts-of-Speech tagging (Toutanova et al., 2003) and Named

Entity Recognition (Finkel et al., 2005). The tokenisation is customised to correspond

closely to the ERG tokenisation; hyphens are removed during preprocessing, as they tend

to lead to violations of our principle that a token cannot be aligned to multiple surface

predicates. This approach leads to a minimal loss of oracle accuracy as token spans have

to be converted back to character spans for evaluation.

We use the ERG lexicon (ERG version 1214) to lemmatise words when they occur in

the lexicon, and the Stanford lemmatiser for remaining words. The lemmas are only used

to predict the lemma part of predicates in delexicalised models; surface forms are still given

as input to the parser.

The ERG lexicon is also used as a dictionary to map tokens (including multi-word

expressions) to constant strings where they occur in the lexicon. The lexicon is used as

constants are sparse and we do not expect all forms to occur in the training data. We inject

knowledge of whether tokens correspond to lexical entries or not in our model as follows:

The POS tags given as input to the model are annotated with whether the token has an entry

in the predicate lexicon or not; similarly NE tags are annotated with whether a substring

starting at that token maps to a constant entry in the lexicon. This enables the model to

make better predictions for words which do occur in the training data but do appear in the

ERG lexicon.

5.5.2 AMR

We use a number of datasets for AMR parsing. The first is LDC2015E86, the dataset re-

leased for the SemEval 2016 AMR parsing Shared Task (May, 2016). The main sources of

this data are discussion forum and newswire (“proxy”) text. The training set has 16,144 sen-

tences. We obtain alignments using the rule-based JAMR aligner (Flanigan et al., 2014). In

order to evaluate the domain-adaptability of our approach we also experiment with the Bio

AMR Corpus, a smaller dataset in the biomedical domain with 5,542 training sentences.
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Candidate Type JAMR alignments PropBank WordNet NE Tagger Lemmatiser
Predicates 3 3 3 7 3

Other concepts 3 7 3 7 3

Constants 3 7 7 3 3

Wikification 3 7 7 3 7

Table 5.1: Lexical resources used to predict candidate lemmas for different types of AMR
outputs. The left-most resource that has a prediction available is used.

We also use CoreNLP to preprocess sentences for AMR parsing.9 The training data is

aligned with the rule-based JAMR aligner (Flanigan et al., 2014). However, our approach

requires all nodes to be aligned to a single token, which JAMR is not guaranteed to give.

We align every Wiki node to the token with the highest prefix overlap. Other nodes without

alignments are aligned to the left-most alignment of their children (if they have any), oth-

erwise to that of their parents. JAMR aligns multi-word named entities as single subgraph

to token-span alignments. We split these alignments to be one-to-one between tokens and

constants. For other nodes with multi-token alignments we use the start of the given span.

For every token we predict candidate lexemes using a number of lexical resources. A

summary of the resources used for each lexical type is given in Table 5.1. The first resource

is dictionaries extracted from the aligned training data of each type, mapping each token

or span of tokens to its most likely concept lemma or constant. A similar dictionary is

extracted from PropBank (Palmer et al., 2005) frames (as included in LDC2016E25) for

predicate lemmas. Next we use WordNet (Miller, 1995), as available through NLTK (Bird

et al., 2009), to map words to verbalised forms (for predicates) or nominalised forms (for

other concepts) via their synsets, where available. To predict constant strings corresponding

to unseen named entities we use the forms predicted by the Stanford NE tagger, which are

broadly consistent with the conventions used for AMR annotation. The same procedure

converts numbers to numerals. We use SUTime (Chang and Manning, 2012) to extract

normalised forms of dates and time expressions. These preprocessing steps are particularly

important due to the small scale of the AMR datasets; a large proportion of concepts and

constants in the test data do not occur in the training data and our goal is to mimic the

9The Stanford tokenisation (with our customisations) corresponds more closely to AMR concepts and
constants than other tokenisers we experimented with, especially due to its handling of hyphenation in the
biomedical domain.
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surface form transformations that are typically performed to predict AMR outputs.

Input sentences and output graphs in the training data are preprocessed independently.

This introduces some noise into the training data, but makes the setup comparable to the

way that decoding is performed. The (development set) oracle graph overlap accuracy is

98.7% F1 for the standard representation, 96.16% for the aligned lexicalised representation

and 93.48% for the unlexicalised representation.

5.6 Experiments

5.6.1 Model setup

Our parser10 is implemented in TensorFlow (Abadi et al., 2015). For training we use

Adam (Kingma and Ba, 2015) with learning rate 0.01 and batch-size 64. Gradient norms

are clipped to 5.0 (Pascanu et al., 2013). We use single-layer LSTMs with dropout of 0.3

(tuned on the development set) on input and output connections. We use encoder and de-

coder embeddings of size 256, and POS and NE tag embeddings of size 32. For DMRS and

EDS graphs the hidden state size is set to 256, while for AMR it is 128 for the small train-

ing sets (LDC2015E86 and Bio AMR) and 256 for the larger or combined datasets. This

configuration was found using a combination of grid search and heuristic search within the

range of models that fit into a single GPU, and gave the best performance on the develop-

ment set under multiple graph linearisations. Encoder word embeddings are initialised (in

the first 100 dimensions) with pre-trained order-sensitive embeddings (Ling et al., 2015).

Singletons in the encoder input are replaced with an unknown word symbol with probabil-

ity 0.5 for each iteration.

5.6.2 Evaluation

Dridan and Oepen (2011) proposed an evaluation metric called Elementary Dependency

Matching (EDM) for MRS-based graphs. EDM computes the F1-score of tuples of predi-

cates and arguments, which are extracted from the gold and predicted graphs. A predicate

tuple consists of the label and character span of a predicate, while an argument tuple con-

sists of the character spans of the head and dependent nodes of the relation, together with
10Code and data preparation scripts are available at https://github.com/janmbuys/

DeepDeepParser.
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Model EDM EDMP EDMA

Top-down lexicalised 81.44 85.20 76.87
Top-down delexicalised 81.72 85.59 77.04
Arc-eager lexicalised 81.35 85.79 76.02
Arc-eager delexicalised 82.56 86.76 77.54

Table 5.2: DMRS development set results for attention-based encoder-decoder models with
alignments encoded in the linearisation, for top-down and arc-eager linearisations, and
lexicalised and delexicalised predicate prediction.

the argument label. In order to tolerate subtle tokenisation differences with respect to punc-

tuation, we allow span pairs whose ends differ by one character to be matched.

The Smatch metric (Cai and Knight, 2013), proposed for evaluating AMR graphs, also

computes tuple-based graph over F1-scores, but does not rely on sentence alignments to de-

termine correspondences between graph nodes. Instead inference is performed over align-

ments between nodes in the predicted and graph graphs to estimate the maximum F1-score

obtainable from a one-to-one node matching. As the matching problem is NP-complete,

Cai and Knight (2013) proposed a hill-climbing method, shown to be efficient and accurate

when using smart initialisation and random restarts.

5.6.3 MRS parsing

We compare different linearisations and model architectures for parsing DMRS on the

development data, showing that our approach is more accurate than baseline neural ap-

proaches. We report EDM scores, including scores for predicate (EDMP ) and argument

(EDMA) prediction.

First we report results using standard attention-based encoder-decoders, with the align-

ments encoded as token strings in the linearisation. (Table 5.2). We compare top-down and

arc-eager linearisations, as well as the effect of delexicalising the predicates (factorising

lemmas out of the linearisation and predicting them separately.) In both cases constants

are predicted with a dictionary lookup based on the predicted spans. A special label is pre-

dicted for predicates not in the ERG lexicon – the words and POS tags that make up those

predicates are recovered through the alignments during post-processing.

The arc-eager delexicalised representation gives the best performance, even though the
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Model EDM EDMP EDMA

Top-down soft attention 81.53 85.32 76.94
Top-down hard attention 82.75 86.37 78.37
Arc-eager hard attention 84.65 87.77 80.85
Arc-eager stack-based 85.28 88.38 81.51

Table 5.3: DMRS development set results of encoder-decoder models with pointer-based
alignment prediction, delexicalised predicates and hard or soft attention.

model has to learn to model the transition system stack through the recurrent hidden states

without any supervision of the transition semantics. The delexicalised models are more

accurate, mostly due to their ability to generalise to sparse or unseen predicates occurring

in the lexicon. For the arc-eager representation, the oracle EDM is 99% for the lexicalised

representation and 98.06% for the delexicalised representation. The remaining errors are

mostly due to discrepancies between the tokenisation used by our system and the ERG

tokenisation. The delexicalised models are also faster to train, as the decoder’s output

vocabulary is much smaller, reducing the expense of computing softmax functions over

large vocabularies and requiring less epochs to converge.

Next we consider models with delexicalised linearisations that predict the alignments

with pointer networks, contrasting soft and hard attention models (Table 5.3). The results

show that the arc-eager models are more accurate than those based on top-down represen-

tations. For the arc-eager models we use hard attention, due to the natural interpretation of

the alignment prediction corresponding to the transition system. The stack-based architec-

ture gives further improvements.

When comparing the effect of different predicate orderings on the arc-eager model,

we find that the monotone ordering performs 0.44 EDM better than the in-order ordering,

despite having to parse more non-planar dependencies.

We also trained models that only predict predicates (in monotone order) together with

their start spans. The hard attention model obtains 91.36% F1 on predicates together with

their start spans with the delexicalised model, compared to 88.22% for lexicalised predi-

cates and 91.65% for the full parsing model.

Table 5.4 reports test set results for various evaluation metrics. Start EDM is calculated

by requiring only the starts of alignment spans to match, not the ends. We compare the
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Model EDM EDMP EDMA Start EDM Start EDMA Smatch

Top-down RNN 79.68 83.36 75.16 84.44 80.93 85.28
Arc-eager RNN 84.16 87.54 80.10 87.81 85.61 86.69
ACE 89.64 92.08 86.77 91.91 89.28 93.50

Table 5.4: DMRS parsing test set results, comparing the standard top-down attention-based
and arc-eager stack-based RNN models to the grammar-based ACE parser.

Model EDM EDMP EDMA Smatch

Arc-eager RNN 85.48 88.14 82.20 86.50
ACE 89.58 91.82 86.92 93.52

Table 5.5: EDS parsing test set results.

performance of our baseline and stack-based models against ACE, the ERG-based parser.

Despite the promising performance of the model a gap remains between the accuracy

of our parser and ACE. This result should be seen in the context that the test set is restricted

to sentences which the ERG can parse, and will therefore a priori parse with high preci-

sion. EDM metrics excluding end-span prediction (Start EDM) show that our parser has

relatively more difficulty in parsing end-span predictions than the grammar-based parser.

We also evaluate the speed of our model compared with ACE. For the unbatched version

of our model, the stack-based parser parses 41.63 tokens per second, while the batched

implementation parses 529.42 tokens per second using a batch size of 128. In comparison,

the setting of ACE for which we report accuracies parses 7.47 tokens per second. By

restricting the memory usage of ACE, which restricts its coverage, we see that ACE can

parse 11.07 tokens per second at 87.7% coverage, and 15.11 tokens per second at 77.8%

coverage.

Lastly we report results for parsing EDS (Table 5.5). The EDS parsing task is slightly

simpler than DMRS, due to the absence of rich argument labels and additional graph edges

(including undirected edges) that allow the recovery of full MRS. We see that for ACE

the accuracies are very similar, while for our model EDS parsing is comparatively more

accurate on the EDM metrics. We hypothesise that most of the extra information in DMRS

can be obtained through the ERG, to which ACE has access but our model has not.

A qualitative analysis shows that our parser produces reasonable parses for sentences
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Figure 5.8: EDS parse produced by our parser for a sentence that cannot be parsed by the
ERG. The unlexicalised form of the graph is shown. The span of the subordination node is
indicated, other nodes align to single tokens.

Model Concept F1 Smatch

Top-down attention, no tags 68.23 56.05
Top-down attention, with tags 70.16 57.95
Top-down pointer, lexicalised 71.25 59.39
Top-down pointer, delexicalised 72.62 59.88
Arc-eager hard attention, delexicalised 76.83 59.83
Arc-eager stack-based, delexicalised 77.93 61.21

Table 5.6: Development set results for AMR parsing (LDC2015E86).

that ERG cannot parse: See Figure 5.8 for an example of a sentence that ACE couldn’t

parse, together with the graph predicted by our model.

5.6.4 AMR parsing

Next we report results for AMR parsing, starting with the LDC2015E86 corpus, on which

most existing AMR parsers have been evaluated. Development set results on our models

are given in Table 5.6. We compare two versions of the attention-based baseline: The

first takes only words as input, the second embeds named entity and POS tags as well,

and utilises pre-trained word embeddings. The arc-eager-based models again obtain the

best performance, mainly due to improved concept prediction accuracy. However, concept

prediction remains an important weakness of the model; Damonte et al. (2017) reports that

state-of-the-art AMR parsers score 83% on concept prediction.

We report test set results in Table 5.7. Our best neural model outperforms the baseline
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Model Smatch

Flanigan et al. (2014) 56

Wang et al. (2016) 66.54
Damonte et al. (2017) 64

Peng and Gildea (2016) 55
Peng et al. (2017b) 52
Barzdins and Gosko (2016) 43.3
Konstas et al. (2017) (baseline) 55.5
Konstas et al. (2017) (semi-supervised) 62.1

Top-down RNN no pointers 56.56
Arc-eager RNN stack-based, delexicalised 60.11

Table 5.7: AMR parsing LDC2015E86 test set results (Smatch F1 scores). Published
results follow the number of decimals which were reported.

Model Smatch

Top-down soft attention, no tags 54.60
Top-down soft attention, with tags 57.27
Top-down pointer, lexicalised 57.99
Top-down pointer, delexicalised 59.18

Table 5.8: Development set results for the Bio AMR corpus.

JAMR parser (Flanigan et al., 2014), but still lags behind the performance of state-of-the-

art AMR parsers such as CAMR (Wang et al., 2016) and AMR Eager (Damonte et al.,

2017). These models make extensive use of external resources, including syntactic parsers

and semantic role labellers. Our attention-based encoder-decoder model already outper-

forms previous sequence-to-sequence AMR parsers (Barzdins and Gosko, 2016; Peng et al.,

2017b), and the arc-eager model boosts accuracy even further. Our model also outperforms

a Synchronous Hyperedge Replacement Grammar model (Peng and Gildea, 2016) whose

accuracy is comparable to ours as it does not make extensive use of external resources. Our

baseline is slightly more accurate than the baseline of Konstas et al. (2017), who concur-

rently proposed neural sequence-to-sequence AMR parsers. Konstas et al. (2017) obtain

further improvements through self-training on large unlabelled corpora; this approach is

complementary to the model architecture and linearisations we propose.

We also train an AMR parser for the biomedical domain. During mini-batch SGD
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training we sample Bio AMR sentences with a weight of 7 to each LDC sentence to balance

the two sources in sampled mini-batches. We compare the performance of different RNN

architectures on this dataset as well (Table 5.8).

We see that the same broad trends hold as on LDC2015E86, with the pointer-based

models outperforming those with attention only. POS and NE embeddings give a substan-

tial improvement. The performance of the baseline with richer embeddings is similar to

that of the first pointer-based model. The main difference between these two models is

that the latter uses pointers to predict constants; therefore in this case the gain due to this

improved generalisation is relatively small. The delexicalised representation with separate

lemma prediction improves accuracy by 1.2%. On the Bio AMR test set the best top-down

model obtains 59.27% F1.

5.7 Conclusion

We advanced the state of parsing by employing deep learning techniques to parse sen-

tences to linguistically expressive semantic representations that have not previously been

parsed in an end-to-end fashion. We formulated the problem of end-to-end semantic graph

parsing, and proposed a transition system that can predict these graphs, as well as graph

linearisations. Our key contribution is the first robust, wide-coverage parser for MRS. Our

parser is scalable, faster than existing parsers and amenable to batch processing. This work

opens many opportunities for the application of linguistically expressive, structured seman-

tic representations to natural language understanding and generation tasks. We believe that

there are many future avenues to explore to further increase the speed and accuracy of such

parsers. We propose several extensions to this work in the next chapter.
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Chapter 6

Conclusion

6.1 Summary and conclusions

Our thesis was that distributed representations learned by neural networks and linguistically-

motivated structured representations are complementary in models that form the basis of

language generation and understanding applications. In this section we summarise our

main results and evaluate the evidence we found in support of this thesis.

6.1.1 Generative syntactic parsing

In the first part of this thesis (Chapters 3 and 4) we proposed a series of generative depen-

dency parsers. We showed that they can achieve accuracies up to 90.7% UAS, which is

higher than many previous discriminative parsers and most generative parsers, but still less

accurate than the best discriminative models. Our decoding algorithm based on particle-

filtering enables more efficient parsing than previous generative models - with a small loss

in accuracy we can parse up to 200 sentences per second. However for practical application

in generation tasks further efficiency improvements may be required.

We showed that syntactic structure improves language modelling performance by a

large margin over n-gram language models (at least for small datasets). Our models are able

to adapt the syntactic structure to learn trees that are more suited to the language modelling

objective. Our particle filtering-based inference approach shows that the distribution over

parse trees learned by the model is very peaked, and our method gives a good estimate of

the marginal distribution. While we were able to do exact inference with the RNN-based

model, improving language modelling performance over RNNs is a greater challenge here.
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Exact inference does however enable us to perform end-to-end learning by marginalising

over the parse trees.

We found that neural networks and syntactic structure are complementary for language

models based on Markov assumptions. The neural network-based generative models are

also better parsers than the Bayesian model with carefully constructed priors. However,

RNN language models without explicit syntactic structure outperform these models, and

we were not able to show that syntactic structure leads to an improvement over RNN-

only language modelling. One potential explanation is that the model structure, chosen

to enable exact inference, does not capture enough syntactic information, as it only allows

conditioning on one syntactic element (the stack top) at a time, while the rest of the structure

has to be captured by the LSTM. Recurrent neural network grammars (Dyer et al., 2016) do

not have this limitation as the model learns compositional representations over all subtrees

in the stack and explicitly encodes the stack, at the cost that exact inference is not possible.

6.1.2 Semantic graph parsing

We proposed a robust, fast, and reasonably accurate MRS parser. Our approach over-

comes the major disadvantage of grammar-based parsers which are not able to parse all

sentences, an important requirement for applying parsers to downstream language under-

standing tasks. Our parser is also much faster. It is less accurate than the grammar-based

approach, but the test set available for evaluation is restricted to sentences which the gram-

mar can parse, which means that a priori these sentences can be parsed with high precision

by the grammar-based parser. Therefore this evaluation does not fully test the generalisa-

tion ability of our model.

We showed that the same model improves the accuracy of AMR parsing over previous

neural encoder-decoder approaches by a large margin. Furthermore the model is more

accurate than other AMR parsers using comparable resources.

The key technical contribution of this work is to show how to perform complex structure

prediction – parsing sentences to unrestricted graphs with a many-to-many relation between

words and graph nodes – using RNNs. These structures could not be parsed directly (with-

out intermediate syntax) or robustly by previous approaches. The specific contributions we

made are:
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1. We showed that predicting top-down linearisations of the spanning trees of graphs

with attention-based encoder-decoder RNNs is a strong baseline for AMR and MRS

parsing.

2. Transition-based parsing – incrementally predicting transition actions which generate

the graph – outperforms the top-down generation model. The innovation here is that

the transition system (stack and buffer) is decoupled from the input sentence; the

decoder is formulated as a generative model over graphs, conditioned on the input

sentence through an attention mechanism.

3. In addition to the graph structure, node-to-token alignments, including phrasal align-

ments of longer spans, are also predicted: We showed that using pointer networks to

perform this prediction is more accurate than predicting alignments as strings as part

of the linearised output.

4. We showed that hard attention with supervised alignments outperforms soft attention,

while adding an alignment based on the top of the stack to the conditioning context

further improves performance. Because the RNN encodes the entire context, the

inclusion of additional features here does not affect any independence assumptions,

but rather changes the inductive bias of the model to explicitly model non-sequential

structure, in this case expressed through the transition system stack, which helps to

overcome the recency bias of RNNs.

5. We presented a GPU implementation of the RNN parser which supports batch pro-

cessing. The result is an efficient parser which is much faster than the existing

grammar-based approach. However, this implementation comes at a considerable

engineering cost. In particular, TensorFlow is based on static computation graphs to

implement neural networks, which means that the size of all vectors have to be fixed

in advanced. Therefore representing the state of the transition system is non-trivial

and involves implementing a number of custom operations on Tensor data structures.

Recent advances in neural network packages based on dynamic computation graphs,
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including PyTorch and DyNet,1 simplify the implementation of these models consid-

erably, but might be less efficient.

We showed that the MRS parser is able to predict plausible structures for sentences

that could not be parsed by the underlying grammar (which parsed all training sentences).

Although we did not do a formal analysis, the DMRS parses produced seem mostly well-

formed and consistent with the grammar, even though this is not explicitly enforced. It is

plausible that the graphs could be converted back to well-formed original MRS with logical

variables and scope under-specification.

The MRS parser is accurate enough that it could reasonably be used for downstream

applications, in contrast to many other linguistically expressive semantic frameworks, in-

cluding AMR, which are far less accurate. One of the main reasons for this is that the MRS

annotations are consistent. This is due to the principles of compositional semantics, where

the semantic structure represents sentence meaning rather than speaker meaning (which is

more subjective and ambiguous) and the annotation process which enforces consistency

with the grammar (Bender et al., 2015). In contrast, AMR has been shown to have low an-

notator agreement, which is at least partly due to it not being constrained by the principles

of compositional semantics.

6.2 Future work

We discuss a number of opportunities for future work opened by the research in this thesis.

6.2.1 Generative syntactic models

• While our generative parsers are more accurate than most previous generative parsers,

we believe there are still opportunities for further improvements in accuracy, using a

combination of more expressive models and better inference methods. For example

an RNN-based model with a larger conditioning context and approximate rather than

exact inference could improve performance.

• RNN language models have been shown to have limited ability to predict syntax-

sensitive long-distance dependencies such as subject-verb agreement (Linzen et al.,
1http://dynet.io
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2016). Future work should explore whether our syntactic language models are able

to overcome this limitation, and if we can learn tree structures that capture these

dependencies without annotated trees, with or without agreement supervision.

• Training models for multiple languages should be investigated. We performed pre-

liminary experiments which showed considerable variation in performance: For some

languages accuracy is close to that of published results for comparable discrimina-

tive models, while for others there is a larger gap. However, model hyperparameters

will have to be tuned separately for different languages. Our models are currently re-

stricted to projective dependencies, so training for languages with a high proportion

of non-projective edges will require extensions. Character-based embeddings will

probably be required for morphologically-rich languages.

• We showed that semi-supervised learning can improve language modelling perplex-

ities when training with Viterbi EM. However, alternative training methods could

further improve both parsing and language modelling performance. Parsing unla-

belled text with an accurate discriminative model and then learning the generative

model from that could improve performance. This could be placed in an auto-encoder

framework where the sentence is encoded as a parse tree.

• As generative models have been shown to have a lower sample complexity than cor-

responding discriminative models (Ng and Jordan, 2002), we believe that supervised

generative models could be of particular use for parsing languages where only small

training sets are available. Semi-supervised learning could further improve perfor-

mance in low-resource settings by learning a better data distribution from unlabelled

corpora.

• Further research is required into large-scale unsupervised learning of syntactic gen-

erative models in the context of language modelling or conditional generation tasks.

There are still computational challenges in scaling training to large corpora. Another

setup is to perform unsupervised syntactic learning in the context of an end task such

as machine translation, but this will also be very expensive computationally.
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• Our models can be employed in downstream language generation applications, in

particular as a component of neural decoders. This could be beneficial for generating

syntactically well-formed output in machine translation and other generation tasks.

In particular this could be useful in low-resource tasks where neural models might

not have received enough training data to produce syntactically well-formed output.

A disadvantage of our generative models is that they require inference over syntac-

tic structure during decoding, which may slow down performance. However our

recurrent generative parsers learn sequential RNNs that have syntactically-informed

representations due to being used to make parsing decisions. These representations

could be used as the first layer in a downstream decoder to convey at least some of

the syntactic information learned by the generative model.

6.2.2 Semantic parsing

• A major strand of semantic parsing research has been concerned with parsing ques-

tions to logical forms or query languages that can be executed against a database. A

disadvantage of the current approach is that parsers are usually trained on domain-

specific corpora and training sets are relatively small. CCG has been used as a frame-

work for learning compositional semantic representations within the context of an

end task (in this case learning a query that yields the correct answer when executed

against a database). An alternative would be to use the semantic representations

learned by our DMRS parser. A mapping could be learned with minimal supervision

from the DMRS graph or a scope-underspecified logical form that can be obtained

from DMRS graphs.

• Semantic graphs can be used to train general purpose sentence encoders, encoding

sentences into fixed-sized vectors. This is of interest as it is not clear if the objec-

tive functions of existing methods to learn sentence embeddings (Kiros et al., 2015)

are well-matched with representing sentence meaning. Sentence representations can

be constructed from semantic graphs through recursive or convolutional neural net-

works.
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• Recently machine reading tasks which involve being able to answer questions from

documents have become prominent due to the development of large-scale datasets

and the ability of neural networks to learn to encode and reason over long con-

texts (Hermann et al., 2015). Semantic graphs can represent complex relations which

sequential encoders might fail to identify. Therefore one option would be to use our

MRS parser to parse documents, and then either encode the graphs into sentence

vectors or use an attention mechanism over the graph structure to perform inference.

• One of the main advantages of learning structured representations is that they can

be applied to inference and reasoning: The representations can be manipulated with

well-studied algorithms for graphs and logical structures. An example would be to

perform logical derivations which can be used to assert the truth of a statement. Neu-

ral models also enable the continuous manipulation of these structures, for example

through semantic graph encodings and attention mechanisms.

• The encoder-decoder framework can easily be extended to multi-task learning for

parsing multiple semantic representations. Apart from AMR and MRS-based graphs,

there are other semantic graph-based representations that can be put in the same

framework, for example CCG semantic dependencies (Kuhlmann and Oepen, 2016).

There are also a number of related semantic analysis tasks that produce representa-

tions that are not full-sentence semantics but can be represented in the same frame-

work. This includes semantic role labelling (Gildea and Jurafsky, 2002), frame-

semantic parsing (Das et al., 2014) and relation extraction tasks. Multi-task learn-

ing has recently been shown to be successful for semantic dependency parsing (Peng

et al., 2017a).

• The role of syntax in semantic graph parsing should be explored further. In traditional

semantic analysis, the syntax is predicted jointly with, and used to constrain possible

semantic structures. Recent work in semantic role labelling has shown that neural

models can outperform previous methods without using syntax, but that there could

still be a role for syntactic structure in further improving performance (He et al.,
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2017). In the context of MRS parsing, the information in the ERG about syntac-

tic structure and fine-grained morphosyntactic features may contribute to increased

accuracy and well-formedness of semantic analyses.

• An advantage of parsing DMRS over other, simplified MRS-based representations

is that it can be converted back to original MRS, which encodes logical forms with

under-specified scope. The question is whether the MRS graphs that our parser pre-

dicts will be well-formed, satisfying the constraints of the grammar as well as allow-

ing scope resolution. If the graphs are not always completely well-formed (as seems

likely), can we incorporate more information from the grammar during training to

encourage well-formedness, and specify constraints that can be enforced during in-

cremental decoding? In particular, the ERG specifies the set of arguments each pred-

icate is licensed to take. Scope-resolved logical forms can be particularly valuable in

downstream applications.

• While we focussed our MRS parsing on newspaper text, there are also annotated

corpora in other domains. It would be interesting to evaluate the performance of our

neural approach on these domains, compared to the grammar-based approach. There

are also treebanks or grammars for MRS in other languages, including Japanese and

German, for which parsers could be trained. The coverage of these grammars are

much lower than for English, so a robust parser could be particularly valuable, and it

would provide a further test-bed to see how well our models can generalise outside

the available grammar.

• Our approach requires a number of pre-processing steps currently performed with ex-

ternal tools. In a full end-to-end model this should all be performed by the neural net-

work. One approach would be to let the input be the untokenised character sequence

of the sentence. The RNN will first predict the word boundaries of tokens, excluding

semantically void words. The recognized tokens can be encoded into vectors that can

be used to predict word lemmas, and fed into the encoder-decoder architecture we

proposed. POS tags and named entities can be predicted jointly during training so

that the model can learn encoder representations that contain the information gained
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from this prediction, which can be leveraged to predict the semantic graphs during

decoding without performing explicit tagging.

• Our model uses hard attention without any restriction on the order of the alignments

of predicted predicates. If we assume that the alignment order is monotone, the

model can be modified to choose from a fixed number of tokens to align to next,

or to make a sequence of binary decisions on whether to generate a predicate for

the current node or not. This will improve the decoding run-time, as the attention

weights currently have to be computed over all input words at each output step.

• Methods to predict non-planar dependencies should be explored further. While our

method can predict unbounded non-planar dependencies, this comes at the cost of

having limited conditioning information available to make the prediction. An alter-

native would be to limit the parser to a restricted class of semantic graphs (for ex-

ample 2-planar dependency graphs (Gómez-Rodrı́guez and Nivre, 2010)) that have

high coverage on available datasets, and then focus on improving the accuracy of the

non-planar edges in those graphs.

• While we focussed on the parsing problem, the ERG is a bidirectional grammar –

it can be applied to both parsing and generation. Recent work has proposed neural

models for generating from AMR (Konstas et al., 2017), which could be extended

to generating from MRS-based graphs. This could be valuable for generation from

structured information, as well as for machine translation.

• This work opens interesting opportunities for semi-supervised learning. In particu-

lar the ERG can produce candidate parses for sentences in unlabelled corpora it can

parse, which will have high precision. These candidate parses can be utilised for

semi-supervised learning by restricting candidate semantic graphs when performing

inference over unlabelled sentences, thereby reducing the variance of the distribu-

tion. In particular this can be done in the framework of neural variational auto-

encoders (Miao and Blunsom, 2016).
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