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Uittreksel

Ons ondersoek generatiewe modelle van musiek en hul toepassing op die gen-
erasie van musiekstukke deur stylimitasie en op komponisherkenning van bestaande
musiekstukke. Ons begin by Markov modelle, die algemeenste benadering to algo-
ritmiese komposisie, en ondersoek dan maniere om die onvermoë van Markov mod-
elle om langer musiekstukke wat as geheel aanvaarbare struktuur toon te genereer,
te oorkom. Ons ontwikkel 'n rekenaartoepassing wat in staat is om groot versamel-
ings musiekstukke as afrigtingsdata en toetsingsdata te gebruik, om ons modelle te
implementeer.
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Abstract

We investigate generative models of music and their application to the generation
of music pieces by style imitation and composer recognition of existing pieces. We
start with Markov models, the most common approach to algorithmic composition,
and then investigate ways to overcome the inability of Markov models to generate
longer music pieces that exhibits acceptable overall structure. We develop a com-
puter application, capable of using large collections of music pieces as training and
testing data, to implement our models.
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Chapter 1

Introduction

1.1 Problem statement

Music is a hidden arithmetic exercise of the soul, which does not know

that it is counting. � Leibniz

The composition of music is essentially a creative process. However, any piece
of music has structure, often a very complex structure. A music piece is usually
composed to conform to a given style, by following established rules and principles
that give the music certain aesthetic qualities. Such rules are studied by all students
undergoing classical Western musical training. However, the complexity of a good
music piece cannot be fully described by such rules. The main reason for that is
that a music piece should exhibit acceptable structure at a local and global level.
There should be a �ne balance between various musical qualities in the piece.

Algorithmic composition, i.e., composition by formalizable methods, has a long
tradition, and numerous procedures have been investigated [1]. The dominant
approach is that of style imitation of existing music pieces. Di�erent classes of
algorithms that can achieve this have been studied. All these approaches, however,
have limitations, the most common being the inability to generate longer pieces of
music that exhibits acceptable overall structure.

The focus of research in music modelling has mostly been on music generation.
However, problems related to the analysis of music pieces can be addressed by the
same generative models that are used for synthesis. Methods to analyse music
pieces with the goal of describing the structure in the music have been studied.
Statistical models trained on sets of similar music pieces can be applied to style or
composer recognition of unseen music pieces.

1



CHAPTER 1. INTRODUCTION 2

1.2 Project aims and methodology

The principle aim of this project was to develop a computer application that takes
pieces of classical music as training data for one of a number of models, and use
each model to generate music pieces and recognize the composers of music pieces.
The generated music should imitate the style and structure of the training data on
a local and, to some extend, global level.

To achieve these aims, we investigated current models and developed new mod-
els for music generation based on automata and grammars. Firstly, we implemented
the standard approach of Markov Models for style imitation. Our implementation
addresses some of the problems involved with the handling of irregularities in input
music pieces. This enabled us to work with large collections of pieces by classical
composers. We extended the model so that it can generate harmony�chords that
sound well together with the generated melody.

Next we investigated ways to model similarities between di�erent fragments of
music and ways to reproduce those similarities in a generative model. Context-
free grammars were implemented for rhythm and pitch sequences. A method to
construct clusters of similar musical contours that has been used successfully in
Jazz music, was applied to classical music.

During development of the project, we primarily used a corpus of 500 Bach
chorales (in MIDI format) as training data for our models. Bach chorales are often
used in music modelling (see e.g. [2], [3]). The motivation for their use is their
abundance, simplicity and good melodic and harmonic form. We also used a music
corpus containing a large number of standard repertoire classical pieces by di�erent
composers to generate music in di�erent styles and to test our composer recognition
system.

1.3 Related work done at Stellenbosch University

Walter Schulze wrote a masters thesis [4] on music generation at Stellenbosch Uni-
versity, graduating in 2009. He used a Markov model approach similar to the one
we implement here for music generation.

In 2010, Herko Lategan did his honours project on algorithmic composition.
He developed a digital audio workbench which allows users to make use of Markov
based algorithmic composition techniques.

1.4 Report organization

In chapter 2, we discuss the problem of the formalized modelling of music for
purposes of algorithmic composition and music analysis. Then, in chapter 3, we
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de�ne the generative theoretical models that form the basis of the techniques that
we investigate and apply to music. After that, in chapter 4, we do a literature survey
on the use of generative models in algorithmic composition and musical information
processing. Chapter 5 describes our implementation of a Markov model for melody
generation. We also set out the general procedure that we follow to implement
generative models. In chapter 6 we use Markov Models to harmonize melodies.
Chapter 7 introduces a model that labels the function of melody notes, clusters
similar bars of music together and uses that information to generate music. Then
chapter 8 gives context-free grammars for melody and rhythm. In chapter 9 we
apply generative Markov Models to the problem of composer recognition of unseen
music pieces. In chapter 10 we describe Bacchus, the generative music modelling
system that we wrote. Finally, in chapter 11, we discuss the evaluation of generated
material, make some conclusions on the capabilities of di�erent models and discuss
possible future work.



Chapter 2

Problem Description

2.1 Elements of musical notation

A music piece consists of notes. A note is a single sound, represented by pitch, i.e.,
how high or low the sound is, and duration, i.e., how long the sound is held [4].
Other properties of a note include its volume (loudness) and timbre (the in�uence
of the instrument that the note is played on the sound).

In a standard western classical music piece, the pitch and duration of sequences
of notes are governed as follows:

� Pitches are named by their pitch classes. There are 12 classes, namely C,
C#, D, D#, E, F, F#, G, G#, A, A# and B. These names repeat every
12 semi-tone pitches, partitioning the pitches into 12 equivalence classes. An
interval of size 12 is referred to as an octave.

� A scale is a sequence of pitch classes de�ned by the starting pitch class of the
scale and the intervals between pitches in the scale. The most common scale
types are the major and (natural) minor scales.

� The key signature of a piece indicates the scale that forms the basis of notes
of the piece. However, a piece can also have accidentals, notes that are not
in the scale of the key signature.

� The beats of a music piece are constant time intervals that govern the begin-
ning of notes in the music (although notes can also start o�beat). The tempo

indicates the length of those beats. The time signature indicates the meter
of the music, i.e., the basic grouping of constant numbers of the beats into
bars.

� The rhythm of a sequence of notes describes the duration of each note in the
context of the time signature of the piece.

4



CHAPTER 2. PROBLEM DESCRIPTION 5

� Note durations are expressed as a fraction of a �whole note� (usually 4 beats).
Typical durations are that of a half note, quarter note (crotchet), eight note
(quaver) and sixteenth note (semi-quaver). An exception to the 1

2n
format is

triplets: Three quaver triplets have the total duration of a quarter note.

In general, a music piece consists of a number of voices, each voice being a
single time-dependant sequence of notes. The melody of the music piece, the most
signi�cant voice, is usually the highest. The harmony of the music is the way that
di�erent notes sound simultaneously. The harmony can be described by chords,
prede�ned combinations of notes in the scale of the music that sound well together.

2.2 Music as a complex phenomena

In a lecture [5] in March 2011 at Stellenbosch University, Prof Paul Cilliers argued
that complexity is a fundamental attribute of music: It is not possible to have a
model that can su�ciently describe all the aspects of a music piece. A complex
system has interconnected parts that as a whole exhibits properties that are not
obviously deduced from properties of the individual parts. The most important
manifestation of this complexity in music is that some compositions or performances
speak to us�the music is very satisfactory to the listener�while others do not.
This is explained by the notion of emergence in complexity theory: That a complex
system results from simple interactions between simple parts of the system.

What we can take from this in the application of algorithmic composition is as
follows: We cannot create a system that is guaranteed to show emergence. However,
we can model di�erent components of a system in a way that can lead to emergence,
and by careful study we can construct models that will assign high probabilities to
pieces that have qualities that occur in emergence, and low probabilities to pieces
that do not show potential of emergence.

2.3 Generative grammars

Chomsky [6] refers to the ability of humans to generate an in�nite number of
sentences as a creative process. A primary goal of linguistics is to formulate a �nite
grammar (sentence generating device) that accounts for this creativity and is able
to generate exactly all the valid sentences in the language. A good grammar will
be reasonably simple and will assign a sensible syntactic structure to sentences.

An important attempt to formulate a theory to describe structure in music
is that of Lerdahl and Jackendo� in A Generative Model of Tonal Music [7].
Their goal is to give a formal description of the musical intuitions of a listener
experienced in a musical idiom. As with many other approaches to music modelling,
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concepts that originated in linguistic theory are used in the formulation of the
theory. However, despite the existence of parallels between language and music,
they warn against the literal translation of aspects of linguistic theory into musical
terms. The di�erences in the concepts of structure and meaning in language and
music are just too big to justify such parallels.

2.4 Historical development

The �rst known approach to automatic musical structure generation is that of
Guido of Arezzo, around 1000 AD [1]. He generated melodies from text by mapping
letters and syllables to tone pitches and melodic phrases. In the 13th century, R
Lullus created the Ars Magna, a machine capable of generating logical statements.
This laid the ground for generative grammars, ways to generate valid statements
by algorithmically combining acceptable terms. Algorithmic composition would
later extensively use such generative approaches. In the 18th century the musical

dice game became popular. It involved making random selections from a number
of available musical fragments, and concatenating them to form a music pieces of
prede�ned length.

The �rst fully computer-generated composition was the Illiac Suite, produced
by L. Heller and L. Isaacson on the ILLIAC computer at the University of Illi-
nois in 1956. This work inspired musicians and computer scientists to investigate
approaches to algorithmic composition with computers.

After initial success in in 1950s with statistical, empirical approaches to music
generation, driven by advances in machine learning, there developed a sense of frus-
tration with the inability of models to generate even simple satisfactory melodies [8].
This led to a long period where most work on music generation involved a knowl-
edge engineering approach. Though these models delivered good results, the music
they generated was too constrained and relied too much on the musical judgment
of their creators.

Chomsky's rejection [9] of Markov models for language also contributed to the
suppression of work on such models for music. However, it did lead to the formu-
lation of more powerful generative grammars for music.

In the 1990s, following the decisive success of statistical models in speech recog-
nition, there was a dramatic move back to statistical models in linguistics. This
was followed by a similar shift is music modelling.

Presently, David Cope is one of the most prominent composers making use of
algorithmic composition techniques. His system Experiments in Musical Intelli-

gence (EMI) generates music of a high degree of complexity. He uses the approach
of musical �recombinancy�, which recombines musical fragments found by complex
analysis of a given corpus of music [1].
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2.5 Approaches to music modelling

In algorithmic composition, one can distinguish between systems of genuine com-
position and systems of style imitation. Genuine composition uses rules and pro-
cedures chosen by the composer or programmer to create new pieces of art. Style
imitation examines given music pieces, constructs a model to represent some of the
characteristics of these pieces and then uses a stochastic model to generate new
music pieces that re�ects those characteristics.

Algorithmic composition is predominantly used in the �eld of style imitation.
The main reason for this is that composers seldom publish the formalizable ideas
that they do use in their compositions [1]. In most genuine compositions that make
use of algorithmic composition techniques, essential decisions are still left to the
creativity of the composer. It is therefore di�cult to classify a piece as a genuine
algorithmic composition.

There are two approaches to generative models for style imitation [2]. In the
�rst approach, knowledge engineering, rules and constraints are explicitly encoded
in some logic or grammar. In the second approach, empirical induction, parameters
of a statistical model are determined by an analysis of existing compositions.

The two goals of generative models are analysis and synthesis. In language
modelling, the focus was from the beginning mainly on analytic methods. In con-
trast, in music modelling, research focused initially mainly on synthetic methods.
Only recently has analytic topics such as musical classi�cation and phrase structure
analysis become popular. However, Conklin [8] argues that we do not need to dis-
tinguish between analytic and synthetic methods. The problem of music generation
can be made equivalent to that of sampling from a statistical model. This problem
can be separated from the problem of formulating and training models.

The concept of a predictive model is used to unify the problems of analysis and
synthesis. A predictive model is a statistical model that tries to predict the next
note in a melody given a preceding sequence of notes. The predictive power of
a model can be measured quantitatively by the notion of entropy. Such models
can be compared to see how well they model music pieces in a speci�c style. It
is hypothesized in [2] that highly predictive theories will also generate acceptable
original music pieces. Predictive models can also be applied to composer or style
recognition.



Chapter 3

Automata and Grammars

3.1 Introduction

A generative grammar is a recursive rule system capable of generating well-formed
strings in a language [1]. The Chomsky hierarchy distinguishes between four types
of generative grammars that show di�erent levels of restriction. A Markov model is
equivalent to a regular grammar, the most restrictive type of grammar. The next
grammar in the hierarchy, somewhat less restrictive, is the context-free grammar.

A grammar can be made probabilistic by adding weights to each of the di�erent
production rules for the expansion of non-terminal symbols. These weights can be
estimated to maximize the probabilities that the model assign to a given set of
sequences.

We now de�ne the models and grammars that we use, and describe ways to
represent them.

3.2 Markov chains

A stochastic chain describes a sequence of time-dependent random events [1]. An
event is represented by one of a �nite number of states. The state space is the set of
possible events. A Markov chain (MC) is a stochastic chain where the probability
of the future state qt+1 is dependent only on the current state qt [1]. Transitions
between states are governed by transition probabilities. A Markov chain adheres to
the �rst order Markov assumption:

P (qt+1|qt, qt−1, . . . , q1) = P (qt+1|qt),

where the state space is Q = {q1, q2, . . . , qt}.
When more than one past event is used to calculate transition probabilities,

we have a higher order Markov chain. The transition probability of a n-th order

8
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Markov chain is dependent on the previous n events. It therefore has the assump-
tion

P (qt+1|qt, qt−1, . . . , q1) = P (qt+1|qt, qt−1, . . . , qmax(t−n+1,1)).

We transform an n-th order MC to an equivalent �rst order MC by encoding the
history of states (the previous up to n states) into the names of the state. Therefore,
we replace the state state space Q by the union of Q1, Q2, . . . , Qn, where Qi is the
set of state sequences of length i [10].

Given some sequences of symbols, we can construct an MC, �rst or higher
order, that models the sequences: The state space of the MC is the set of all
possible symbols in the sequences of the MC, and the transition probabilities of
the MC are determined by calculating the maximum likelihood estimate, using
frequency counts on the given data. So in a �rst order MC, for given sequence sT1 ,
the transition probability between states qi and qj is:

#(st = qi, st+1 = qj)

#(st = qi)

The training of the model is the process of estimating the parameters of the model
(in this case the transition probabilities) from training data.

3.3 Finite-state machines

A �nite-state acceptor (FSA) is a network of states and labeled transitions, with
exactly one start state and one �nal state [11]. A string is an ordered sequence
of symbols drawn from a �nite vocabulary. An FSA accepts string w1, w2, . . . , wn

if there is a path from the start state to the �nal state along transitions labeled
w1, w2, . . . , wn. The empty symbol is also a valid transition label, denoting that no
new symbol is read from the string. An acceptor with more that one �nal state
can be transformed to have only one �nal state by adding transitions on empty
symbols from the old �nal states to a single new �nal state.

A �nite-state transducer (FST) is similar to an FSA, but each of its transitions
have an input label and an output label. An FST therefore transforms an accepted
input string into an output string.

A weighted �nite-state acceptor (WFSA) assigns a weight to each string that
it accepts. Every transition is assigned a weight, and the weight of the string is
the product of the transition probabilities along the path by which the string is
accepted. Similarly, a weighted �nite-state transducer (WFST) is an FST with
probabilities assigned to the transitions. A weighted �nite-state acceptor can be
represented as a WFST with the same input and output symbols on every transi-
tion.
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The concept of semiring abstraction let us de�ne automata representations and
algorithms over di�erent weight sets and algebraic operations. A semiring K con-
sists of a set K with an associative and commutative operation ⊕ and an associative
operation ⊗, with identities 0 and 1, respectively, such that ⊗ distributes over ⊕,
and 0⊗ a = a⊗ 0 = 0.

In this project we will either be working in the boolean semiring (corresponding
to an unweighted state machine) or the probability semiring, where each transition
weight corresponds to the probability of that transition.

Formally, a Weighted �nite-state transducer T = (Σ,Ω, Q,E, i, F, λ, ρ) over the
semiring K is given by [12]:

� An input alphabet Σ

� An output alphabet Ω

� A �nite set of states Q

� A �nite set of weighted transitions E ⊆ Q× (Σ ∪ ε)× (Ω ∪ ε)×K ×Q

� An initial state i ∈ Q

� A set of �nal states F ⊆ Q

� An initial weight λ

� A �nal weight function ρ

We can represent Markov chains as WFSAs. A WFSA representing a Markov
chain has the same states and transition probabilities as the MC. Every transition
in the WFSA is labeled with the symbol of the destination state. In the case of
higher-order models, the state labels encode the history of the previous n symbols.
The label of a transition is the next symbol generated in the string, which becomes
the last symbol on the label of the state the transition is going to.

3.4 Hidden Markov models

An Hidden Markov model (HMM) is used to model the relation between two se-
quences, a hidden sequence and an observed sequence. The symbols of the hidden
sequence are represented by a discrete number of states. Transition probabilities
between these states are de�ned as with a Markov chain. Every hidden state emits
a symbol of the observed sequence, according to a probability distribution speci�ed
for each state. The emission probability distributions can be discrete or continuous.
An HMM has two special states, the start state and the �nal state. The start state
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does not emit an observed symbol. Transitions from the start state indicate the
initial probability distribution of the hidden states. The �nal state represents the
end of the hidden sequence.

Let xT1 be the sequence of observed symbols and sT1 the sequence of hidden
states. An HMM operates under two fundamental assumptions [13]:

1. The observation independence assumption: An observation is dependent only
on the current hidden state.

P (xt|xt−1, xt−2, . . . x1, st, st−1, . . . , s0) = P (xt|st)

2. The �rst-order Markov assumption:

P (st|xt−1, xt−2, . . . x1, st−1, st−2, . . . , s0) = P (st|st−1)

As with MCs, we can generalize this to higher-order models.

The three main problems related to the use of HMMs and the algorithms to
solve them, are [14]:

1. To compute the probability of a given observation sequence: The forward
algorithm.

2. To �nd the optimal hidden state sequence for a given observation sequence:
The Viterbi algorithm.

3. Given an observation sequence, to adjust the model parameters to maximize
the probability of a observation sequence given the model: Viterbi or Baum-
Welch re-estimation.

We can represent a discrete HMM with the composition of two WFSTs. The
�rst is a MC for the hidden states and their transitions. The input and output
labels of the transitions both represent the hidden sequence, and the input and
output labels at every transition are the same. The second WFST has only one
state, which has multiple transitions to itself. Every transition corresponds to an
element of the Cartesian product of the hidden and observed symbol alphabets. The
input symbol of the transition is a hidden symbol, and the output is an observed
symbol. The weights of the transitions from a hidden symbol to di�erent possible
observed symbols form the emission probability distribution of the hidden state
in the HMM. The left-to-right composition of the �rst and second WFSTs gives a
transducer that takes a hidden sequence as input and gives an observed sequence
as output. This representation is described more concretely in the speci�c models
discussed in later chapters.
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3.5 Probabilistic context-free grammars

A context-free grammar (CFG) consists of the following components [15]:

1. The terminal alphabet, a set of symbols from which the objective sequences
are formed.

2. The non-terminal alphabet, a set of symbols used to construct sequences of
terminal symbols, but not terminal symbols themselves.

3. The start symbol, a non-terminal symbol used as the root in generating a
sequence.

4. Productions, rules that create new sequences by replacing a non-terminal
symbol with a sequence of non-terminal and terminal symbols.

A Probabilistic CFG has, in addition, a set of probabilities, each associated to
a production rule, such that the sum of the probabilities of all the rules with the
same left-hand non-terminal is 1 for every non-terminal symbol.

When strings in a context-free language are given as training data for a CFG,
we do not know which production rules are used to generate the string. This is in
contrast to a regular grammar, were we can just read o� the state transitions in a
(deterministic) FSA as we read the input string from left to right. In a CFG, the
derivation of a string may be ambiguous: Di�erent sequences of applied production
rules may yield the same string.

To train PCFGs, we use a version of the Expectation Maximization algorithm,
as described in [16]. We start by giving sensible initial probabilities to all the CFG
production rules. Then we determine the possible parse trees of our input sentences,
weighted by the probabilities that the PCFG assigns to each parse (expectation
step). These parse trees are then used to reestimate the probability of each of the
production rules, using maximum likelihood estimation (maximization step). We
can repeat these two steps until the change in the total probability of the parse
trees falls below a certain threshold.

3.6 Regular tree grammars

A weighted regular tree grammar (RTG) over semiringW is a 4-tupleG = (N,Σ, P, n0i)
where [17]:

� N is a �nite set of non-terminals

� Σ is the ranked input alphabet
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� P = (P ′, π), where P ′ is a �nite set of productions, each p ∈ P of the form
n → u, n ∈ N , u ∈ TΣ(N), and π = P ′ → W , a weight function of the
productions. TΣ(N) is the set of all trees over Σ that may have symbols in
N as leaves (that non-terminals will later be replace by applying production
rules to them)

� n0 ∈ N is the initial non-terminal symbol

We can represent a CFG as a tree grammar [18]. The main di�erence is that a
CFG produces a string, and we replace non-terminals in the string repeatedly until
it only contains terminals, while a tree grammar produces a tree that contains all
the non-terminals to which production rules were applied in the tree derivation.
The set of yields (the strings formed by reading the leave symbols o� the trees
from left to right) of the trees produced by an RTG is context-free.

3.7 Implementation

In our implementation we use Carmel [19], a �nite-state transducer package, to
process our Markov models. Carmel can train and compose transducers, sample
sequences or get sequence probabilities from transducers.

We use Tiburon [20], a tree transducer package with similar functionality
as Carmel, to implement our context-free grammar and tree transducer models.
Tiburon can convert a context-free grammar to an equivalent regular tree grammar
or tree transducer to perform parsing and training operations.



Chapter 4

Survey of Generative Models in

Music

4.1 Introduction

In this chapter we survey work done on generative models of music. Most of these
models were developed for algorithmic composition. We discuss the use of Markov
models, which are still the dominant approach to style imitation. We also discuss
context-free grammars, the use of generative grammars in music modelling and the
related topic of music prediction.

There are many other paradigms of algorithmic composition: See the book
by Nierhaus [1] for an overview. These paradigms include transition networks,
neural networks, chaos and self-similarity, genetic algorithms, cellular automata
and arti�cial intelligence.

4.2 Markov models

Markov Processes were �rst used for music generation by Harry Olson around
1950 [1]. Subsequently it has been used in many approaches to style imitation and
genuine composition.

Markov models and closely related models remain dominant in statistical music
generation. The main reasons are that they are very fast and easy to perform the
basic tasks of inducing probabilities, computing the probability of pieces and music
generation. The sparse data problem, however, is an important problem that has
to be dealt with.

An example of early work done on algorithmic composition is that of Brooks et
al [21] in 1957. They experimented with modelling melodies with di�erent orders
of Markov chains. A melody is represented by a sequence of pitch numbers, one for
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every eight note, with a distinction made between a new note attack and a hold on
note. They found that one has to �nd a middle ground between Markov chains of
low order, that do not constrain the structure of generated music su�ciently, and
Markov chains of high order, that reproduce large fragments of the music pieces
used for training.

Conklin and Witten [2] use �Multiple Viewpoint Systems� that combines the
representation of independent views of the music being modelled. Context models
are used to model sequences of events. A context model is a smoothed higher order
Markov chain: The probability distribution of event n in the sequence is given by
a weighted linear combination of the probabilities of the event given each of the
previous 0 to n− 1 events in the sequence. The viewpoints modelled include pitch,
rhythm, time signature, location of the ends of phrases, the start time and the
duration of a piece.

Trivino-Rodriguez and Morales-Bueno [22] use Probabilistic Su�x Automata
(PSA) for music generation. A PSA is a variable-order L Markov chain, meaning
that its memory length of previous states can vary from 0 up to L. This model does
not grow exponentially with size, as standard higher-order Markov chains do, so
it is feasible approach to higher-order models. A Multi-attribute Prediction Su�x
Graph is used for music prediction.

At Stellenbosch University, Schulze and Van der Merwe [10] investigated mixed
order Markov models (equivalent to PSA) and higher order Markov models for
music generation. Their evaluation found that, despite mixed order models being
able to handle a much longer memory length, music generated from these models
are not of a higher quality than that of higher order Markov models.

De la Higuera et al [23] learns Stochastic Finite Automata and apply them to
musical style recognition. Music pieces are represented by sequences of altering
pitch and duration symbols. States in the automata are either pitch or duration
states. The MDI learning algorithm is used: Firstly, a pre�x tree acceptor is build.
Then states are merged iteratively to minimize the number of states and allow
previously unseen pieces to be accepted. The probabilities assigned to music pieces
are used to classify pieces according to musical style.

A machine learning approach to learning jazz grammars, implemented in Im-
proVisor system, is proposed in [24]. The melody is abstracted in terms of note
categories, note durations and the melodic contour�the interval range of ascend-
ing or descending note sequences. Melody fragments with a �xed total duration
are represented by S-expressions with these abstractions. These expressions are
divided into clusters. A Markov chain of these clusters is then constructed. When
this model is used for generation, a sequence of clusters is generated. Then, for
each cluster, an abstract melody is sampled from the cluster. The abstract melody
is then replaced with a concrete melody by sampling from pitch sequences that
satis�es the constraints of the abstract melody. However, those constraints may
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have to be relaxed somewhat to allow for the generation of a pitch sequence that
satis�es the note category and interval range restrictions over a given sequence of
chords.

4.3 Hidden Markov models

The hidden Markov model is a powerful tool in music generation due to its ability
to model underlying discrete phenomena of sequences. The clearest example of this
in music is harmony.

Allan and Williams [3] use HMMs for the harmonization of given melodies.
The visible states of the HMM are melody notes and the hidden states are possi-
ble harmonizations for the melody line. They treat di�erent con�gurations of the
same chord�pitch combinations with the same implied harmony�as di�erent har-
monizations (hidden states). The harmonization is done on beat-level. A second
HMM is used to model ornamentation: To smooth the movement between notes in
a line of music, extra notes are added and pitch repetitions are merged.

The MySong automatic accompaniment system [25] uses an HMM approach
to generate chords for a piece sung by the user. The system, made commercially
available by Microsoft, has model parameters for the style of generated chords.
The �jazz factor� and the �happy factor� are parameters that the user can set. The
system uses training data from a variety of musical styles. The vocal melody sung
by the user is recorded and the most likely key of the melody is identi�ed. The
melody is then transposed to C for purposes of harmonization, chord are generated
with an HMM, and the generated chords are transposed back to the original key
of the melody. The HMM also has chords as hidden states and melody notes as
observations.

4.4 Context-free grammars

Keller and Morrison [15] use a hand-crafted context-free grammar to generate jazz
improvisations over given chords in their program ImproVisor. The grammar repre-
sentation of pitches is based on the function of the notes in the given chord: There
are 7 terminal symbols that each represent a note category�a possible function
of a note played over a given chord. Elements in a generated sequence consist of
a terminal pitch-class symbol and a duration speci�ed for that pitch. Additional
constraints can be put on the symbols that can be generated. Production rules
for a context-free grammar is given, with probabilities that were assigned manually
by the authors. After a sequence is generated, concrete pitches are sampled that
satisfy the constraints of the terminal symbols and the given sequence of chords.
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Gilbert and Conklin [26] proposes a probabilistic context-free grammar for
melody in terms of melodic reductions. Pitch is represented by intervals, and
production rules for a context-free grammars is de�ned by replacing one interval
by two other intervals. The �New� rule allows for any interval to be inserted,
while other rules allow for the substitution of one interval with two intervals that
have the same resultant as the original ones. All these intervals are represented
by non-terminals, until no futher expansion of intervals is done, when they are
replaced by terminals representing the same intervals. The grammar is trained by
an expectation-maximization algorithm for probabilistic CFGs.

Bod [27] attempts to model phrase structure in language and music in a uniform
way. Given the widespread and successful use of treebanks in natural language
processing, he uses the Essen Folksong Collection, a collection of melodies that
includes phrase separators in the melodies. When sentences are parsed over a
probabilistic tree grammar, there are two goals: The parse trees should be as
simple as possible, and the probability of the trees should be as high as possible.
Bod �nds that the best way to combine these goals in a generative model is to
select the parse with the simplest structure from the n most likely trees. The tree
structure (that forms a context-free grammar) he proposes for music is relatively
simple: The non-terminals are S for song, P for phrase and N for note. The children
of the initial non-terminal S are Ps, one of each phrase of the piece. The children of
P are Ns, one for each note in the phrase, and the Ns are substituted by terminal
note symbols.

SEQUITUR [28] is a linear-time algorithm that infers structure from a sequence
of discrete symbols, forming a context-free grammar for the given sequence. It has
been shown to give reasonable results when applied to music, correctly identifying
cadences. The grammar has the following properties: No pair of adjacent symbols
may appear more than once in the grammar, and every rule must be used more
than once.

In a recently published article [29], probabilistic tree automata are used to
melodic identi�cation. Melodies are represented by a tree structure: The pitches of
a melody are the labels of the leaves of the tree. The rhythm is represented by the
structure of the tree: Nodes at every level of the tree represent note durations that
are halve (or for ternary measures, a third) of the durations of the level above. So
the deeper a leave is in a tree, the shorter is its duration. The internal nodes are
labeled by bottom-up propagation of the pitch of what is seen as the most important
of the child nodes. A tree is constructed in this way for every bar, and the bar trees
are linked to a common root node. The concept of an n-gram model over strings
is extended to the tree case by a stochastic k-testable tree model. This model is
represented by probabilistic tree automata, and such automata can be trained with
music pieces of a similar style. The trained PTAs, representing di�erent melody
classes, are used to classify given melodies.
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4.5 Unrestricted grammars

For Lerdahl and Jackendo� [7] the goal of a generative grammar is not to compose
pieces of music (though they acknowledge that a suitable grammar could also be
used for that purpose), but to describe the cognition of music, which is a psycho-
logical phenomenon. Despite the complexity of music, they believe that obvious
forms of organization in music is the basis for understanding the complexity. Gen-
erative models are formulated to induce hierarchical structure over the musical
surface. The hierarchical components of musical intuition investigated are group-
ing structure, metric structure, time-span reduction and prolongational structure.
A distinction is made between well-formedness rules and preference rules. Firstly,
grouping and meter are analysed independently. Meter (rhythmic structure) is a
relatively local phenomenon, with structural dependencies usually limited to only
a few bars. Grouping structure, describing how sequences of notes are hierarchi-
cally grouped together by an experienced listener during perception of the music,
is a global phenomenon. The interaction of grouping and rhythm is described by
time-span reduction, while prolongational structure models what an experiences
listener perceives as tension and relaxation in the music. Transformational rules
are applied to describe non-hierarchical events in a music piece.

Cope's EMI system implements complex strategies for the recombination of
musical material using an augmented transition network, which has the expressive
power of unrestrictive grammars [1]. His system classi�es fragments of music into
�ve semantic classes: Statement, preparation, extension, antecedents and conse-
quent. Rules speci�es the possible successors of each of the classes.

4.6 Sampling from statistical models

When we generate a music piece with a generative statistical model, we are sam-
pling from the probability distribution that the model represents. The dominant
approach to sampling is to take a random walk through the weighted �nite state
model, from the start state to a �nal state. However, Conklin [8] points out that
the probabilities of such samples may be signi�cantly lower than that of the paths
though the model with the highest probabilities. In tasks such as harmonization it is
appropriate to get the best sequence from the model. However, in music generation
we cannot restrict ourselves to only the few pieces with the highest probabilities. A
suggested way to overcome this problem is to use a form Gibbs sampling: Starting
with a given music piece, one iteratively choose a random position in the music,
modi�es a note or a sequence of notes, and accept the change if the modi�ed piece
has a su�ciently large probability. However, such a model should also be able to
preserve similarities in the music piece.



Chapter 5

Melody Generation with Markov

Models

5.1 Implementation

Our system is primarily implemented in Java. However, we use Carmel and Tiburon
to perform many of the operations on the automata that we build. A Bash script
runs the music generation system. The script has parameters that can be speci�ed
through command-line arguments (although all parameters have default values).
The script can also be instructed to perform only speci�ed tasks.

Our system follows three steps in the generation process:

1. Analyse given music pieces.

2. Construct a model for the music pieces.

3. Generate new music pieces from the model.

In this chapter we describe the implementation of the Markov model in de-
tail. In later chapters, we describe the models at a higher level, and only discuss
implementation details where there are di�erences to the approach we follow here.

5.2 MIDI �les and JMusic

The MIDI �le format represent music pieces by event messages about the music,
rather that with an audio signal. MIDI is a standard music �le format in which
a large number of music pieces are available. A symbolic representation of the
music can be obtained directly from a MIDI �le using an appropriate library. In
contrast, with �les in audio signal format, those signals must �rst go through a
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transformation process to convert it into a symbolic music representation. We
therefore work with MIDI �les in our implementation.

We use the JMusic package to read from and write to MIDI �les. In JMusic, a
music piece is represented by a Score. A Score consists of a number of Parts.
The Score also stores global properties of the music piece, including its time
signature, tempo and key signature. Every Part is played by an instrument and
consists of a number of Phrases. The Phrases of a Part may overlap, and
in practice they are di�erent partial voices, and do not (as the name may imply)
correspond to any time-based division of the music piece. In our implementation,
we treat every Phrase of every Part of the Score as a voice of the music. Every
Phrase consists of a (linear) sequence of Notes and Rests. Every Note has a
pitch and a duration, and each Rest has a duration.

5.3 Analysis

The class Analysis is used to analyse the training data. We read the MIDI �les
contained in a speci�ed directory. For each �le, we create an object of the Mu-

sicPiece class that handles the data processing of music pieces in our system. As
mentioned above, we use JMusic to handle input from the MIDI �les.

We treat every phrase from every part of the music piece as a voice, and rep-
resent it by an object of our Voice class. We store the pitch sequence and the
rhythm (note duration) sequence of a voice. The pitch values are stored as MIDI
pitch values, obtained from JMusic. A MIDI pitch value is an integer between 0
and 127 that represents the number of semi-tones the note is higher than the note
5 octaves below middle C. A pitch value of the minimum possible integer value
(de�ned by Integer.MIN_VALUE in Java) indicates a rest. In our implementation
we change the rest value to be −1.

We transpose the pitches of the training music pieces to the key of C major or
A minor, the keys without any sharps or �ats, depending of whether the piece is in
a major or minor key. In JMusic format, the key signature is given as the number
of sharps (key > 0) or �ats (key < 0) in the key. (A key signature cannot have
both sharps and �ats.) From there we calculate the tonic of the key signature as
follows:

transposition = (key ∗ 7) mod 12,

where transposition is the number of semi-tones the current key is above C major
or A minor. The reason for this formula is that key signatures are explained by the
circle of �fths : Every time a sharp is added to a key signature, the tonic goes up
by an interval of a �fth, and every time a �at is added, the tonic goes down by a
�fth. A �fth interval is equal to 7 semi-tones, while an octave has 12 semi-tones.
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While analysing the rhythm of a voice, we infer the bar structure of the piece.
We keep a running total of the note durations during analysis, keeping in mind
that an upbeat will cause an incomplete �rst bar. We insert bar separator symbols
into our analysed rhythm sequences. Note duration is given by JMusic as a double
value, with 1.0 denoting a crotchet. We found it more convenient to represent the
duration internally such that 1.0 denotes a whole note. However, when we write
out string sequences to data �les, we need to use discrete values. We obtain an
integer representation by multiplying the duration by 96 and taking the �oor of
that value as an integer, such that 96 denotes a whole note. This allows us to store
rhythm divisions up to 64th notes, as well as corresponding triplets, without loss
of precision.

We write the data obtained by analysis to .data �les in a format convenient for
use in our system. All the �les are created in one speci�ed directory. Every data �le
has two lines of space-separated words for every input music piece, though one of
these lines will be empty if only a single sequence is represented. Pitches and chords
of major and minor sequences, as well as rhythms of di�erent time signatures, are
stored separately. There are data �les for the following types of sequences (for the
Markov model implementation):

� pitch

� rhythm

� pitch-rhythm

� tempo

The class Convert is used to convert di�erent representation formats of values.
When we write out sequences to data �les, we use the following formatting for
symbols: For pitches, �p� followed by the integer pitch value, or �r� for a rest. For
rhythms, �s� followed by the integer rhythm value for a non-rest, �r� followed by
the integer rhythm value for a rest and �m� for a bar separator.

5.4 Modelling: Building and training automata

We build WFSAs and WFSTs to model the pitch and rhythm of music pieces. We
build the automata with our Java classes. Some of the automata are constructed
with weights, others are trained using Carmel.

The automata are represented by text �les in the format used by Carmel. The
format is as follows: The �rst line contains the symbol of the �nal state. After
that, every line describes a transition between two states. Suppose we are making
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Figure 5.4.1: Example training melody 1

Figure 5.4.2: Example training melody 2

Figure 5.4.3: Example training melody 3

a transition from state 1 to state 2, with �a� as input symbol and �b� as output
symbol on the transition, with probability 0.5. The line of the �le representing the
transition is as follows: (1 (2 a b 0.5)). The �rst symbol of the �rst transition in
the �le is the initial state. The weight and the output symbol is only speci�ed in
some types of automata. The input and output labels of transitions are not allowed
to be integer values, and �*e*� represents an empty transition (no extra symbol is
read from the string).

5.4.1 Higher order Markov chains

The order of the Markov chains used can be set as a parameter. The default value
is 3. Suppose we are working with an nth order Markov chain. An n-gram is any
subsequence of n consecutive symbols. The class Gram represents a symbol and
the number of times it occurs. The class NGram represents the string of an n-
gram and a list of Grams of the possible symbols following the n-gram. Note that
a symbol may here consist of more that one character.

The class CountNGrams extracts n-gram information from the data �les and
construct WFSAs. For the pitch and rhythm, the following is done: For every
sequence, we record the �rst n − 1 symbol subsequences, each storing the �rst i
symbols, i = 1, 2, . . . , n − 1. Then we record and count the occurrences of all
the n-grams in the sequences. We also record the last n-gram of every sequence
separately. We write this information to .abc �les, since we will use it again for the
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Figure 5.4.4: Example Markov chain for pitch

construction of further automata.
Then, using maximum likelihood estimation for Markov chains, as described

above, we can construct an MC and represent it as a WFSA. We use a parameter
to indicate if cadences should be enforced, i.e., if only sequences that end in an
n-gram that occurs at the end of one of the input sequences should be accepted, or
if any n-gram may occur at the end of the sequence.

Next we present an example of second-order MCs for pitch and rhythm build by
analysing three 4-bar melodies in C major. The melodies are given in �gures 5.4.1
to 5.4.3. Our example has some simpli�cations to illustrate the model construction
better. Pitches are represented by their pitch classes. Rhythm is represented as
in standard music notation. Our rhythm model excludes bar separators and rests.
Figure 5.4.4 gives the Markov chain for pitches, and �gure 5.4.5 gives the Markov
chain for rhythm. Normalized transition weights are indicated on the transitions.
Where only one transition in possible, no weight is indicated. Note that the empty
state is the start start and that states with two concentric circles are �nal states.
To reduce the number of states, subsequences that uniquely follow a symbol are
encoded in the same state. Therefore a single transition may result in multiple
symbols being generated. In our example the subsequence following the �rst symbol
in the label of a state is generated by that state.
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Figure 5.4.5: Example Markov chain for rhythm

5.4.2 Restrictions on generated output sequences

We want to place certain restrictions on the generated music. We do that by
constructing FSAs that only accept sequences that adhere to those speci�c restric-
tions. By composing such FSAs with the WFSA used to generate pitch or rhythm
sequences, we enforce the restrictions.

The class BarLengthAcceptor generates an FSA that only accepts rhythm
sequences that consist of full bars, with the possible exception of the �rst and last
bars. This exception is to allow for upbeats. In that case, however, the notes must
still �t into beats of the bar. The motivation for this restriction is that it enforces
structure in the rhythm of the piece. It prevents notes from being hold on over
bars. This is sometimes acceptable in music, but as an exception, not as a rule.
As bar separators are included in the rhythm sequences used for training, it is also
included in the generated rhythms.
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The class NumberOfBarsAcceptor generates an FSA that accepts rhythm
sequences of a given number of bars. As bar separators are already included in the
generated rhythm sequences, we only need to count the number of times they occur.
Together with BarLengthAcceptor, this will ensure that the generated rhythm has
the necessary number of �lled bars.

5.4.3 Hidden Markov models

We model the relationship between pitch and rhythm as follows, with a HMM.
Given a rhythm sequence, we want to �nd the probability distribution of pitch
sequences occurring with the given rhythm sequence. We can then sample a pitch
sequence from that distribution. The probability distribution is determined by
a Markov chain for the pitch sequence, and by the probability of a single pitch
occurring with a given rhythm. In terms of an HMM, we have the MC for pitch se-
quences as the hidden states and transition probabilities, and the rhythm sequence
as the observed sequence. The emission probability distribution of each state is
the probability distribution of the possible durations (rhythms) of a pitch. Given
the observed rhythm sequence, we want to sample from the possible hidden state
sequences given the observed sequence.

We implement the HMM with transducers in Carmel using noisy channel de-
coding, as described in the Carmel tutorial [11]. Suppose N is the pitch sequence
and R is the rhythm sequence. Then, using Bayes' theorem:

P (N,R) = P (N |R) ∗ P (R) =
P (R|N) ∗ P (N)

P (R)
∗ P (R)

So P (N |R) is directly proportional to P (N) ∗ P (R|N).
The class PitchToRhythmTransducer constructs an FST to convert pitch

sequences into rhythm sequences. This FST has only one state, and is trained by
Carmel, given the pitch and rhythm sequences as training data. The composition of
this WFST and a WFSA for pitch can then be used to convert a rhythm sequence
into a pitch sequence sampled from the wanted probability distribution. Figure
5.4.6 gives the transitions (self-loops on the only state of the WFST) of the pitch-
to-rhythm WFST for the example training melodies given above.

We give a graphical model representation of the melody HMM in �gure 5.4.7.
This graphical model is simple, but later we will use the same representation for
more complex models. In the model, a singly circled node represents a random
variable and a double circled node represents a deterministic variable. A shaded
circle represents an observed variable, while an unshaded circle represents a latent
variable. A directed arrow from node A to node B indicated that variable B is
conditionally dependent on variable A.
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c 3/11
c 5/11
c 3/11
d 1/5
d 3/5
d 1/5
e 1/7
e 5/7
e 1/7
f 2/3
f 1/3
g 2/9
g 2/3
g 1/9
a 5/6
a 1/6
b 1

Figure 5.4.6: Example pitch to rhythm transitions

melody_rhythm

melody_pitch

melody_rhythm_pitch

Figure 5.4.7: Graphical model representation for the Markov melody model

5.5 Music generation

We now use the trained transducers and acceptors to generate music pieces. The
class SampleTempo samples a tempo from the tempos of the pieces in the training
data. The sampling is done as follows: The tempos are sorted in ascending order
in a list. We choose i randomly in the range of list positions. Then we sample from
the uniform distribution between the values at positions i and i+ 1 in the list.

Using Carmel, we generate a rhythm sequence from the composition of the
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rhythm WFSA with the rhythm restriction FSAs described above. Then we gen-
erate a pitch sequence from the intersection of the pitch WFSA and the pitch-to-
rhythm WFST, with the generated rhythm sequence given as input sequence.

The key signature of the generated music can be speci�ed as a parameter. The
information describing the generated music piece, including the pitch and rhythm
sequences, are written to a .bc �le. The class Synthesize writes the generated
music piece out to a MIDI �le, using JMusic.

5.6 Alternative Markov Models

5.6.1 Generation with a Markov chain for pitch-rhythm

pairs

We also implement an alternative approach to modelling the relationship between
pitch and rhythm. We can encode a melody as a single sequence of symbols, each
of which encode the pitch and the duration of one note. We can train an nth order
Markov model from such sequences. Then we can generate pitch-rhythm sequences
directly from that Markov chain.

Such a model can model the training data slightly closely than an HMM model:
When a new pitch and duration is generated, the history used for both choices
include the previous n pitches, previous n durations, and the dependency between
the new pitch and duration. In contrast, with an HMM, for pitch the previous n
pitches is used as history, and for duration the previous n durations and the current
pitch is used. However, the penalty for such a model is that the distribution of n-
grams of pairs will be more sparse than the distribution of n-grams as modelled by
an HMM.

5.6.2 A bar approach to rhythm generation

There is a limited number of acceptable rhythm sequences that have a given, �xed
total duration. The bar is a natural division of the rhythm sequences of melodies.
So we construct a Markov chain from symbols that each encode the rhythm of a
whole bar. This model will be able to generate all rhythmic patterns that occur in
as bars in the input data, and will be able to take a longer context into consideration
than our standard Markov chain for rhythm.

5.6.3 An interval approach to pitch generation

An alternative way to modelling pitch sequences is by modelling the intervals be-
tween pitches. Often in music we have reoccurring patterns that have di�erent
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pitch values but the same intervals between pitches. By using intervals instead of
absolute pitch values, we can model such dependencies. We will see in some of the
models that we describe later how to take advantage of the interval representation
approach.

To implement the interval approach, we need to analyse the intervals between
pitches. However, we still want a symbol to represent each note in a sequence.
Therefore, we choose a fundamental melody note, and the �rst note in the melody
is described by the interval between the fundamental note and this note. The
fundamental note is determined as follows: We take the pitch with pitch class C
that is nearest to the average of the melody notes of the training data. This will
give some meaning to the �rst interval, and should make it small. The rest of the
pitches in the melody are each described by the pitch interval from the previous
note to the current note.

The interval between two notes is the number of semitones that the pitch in-
creases (positive) or decreases (negative). Intervals are represented in our data �les
as follows: �i� followed by an absolute interval represents a nonnegative interval
between notes. �j� followed by an absolute interval represents a negative interval
between notes. We analyse the intervals and write interval sequences to text �les
in similar way that we followed for pitches.

After we have trained a Markov chain for intervals, modelled the relationship
between intervals and pitches (with class IntervalToPitchTransducer), and gen-
erated interval sequences, we want to decode the generated interval sequence to a
pitch sequence. Class IntervalToPitchTransducer constructs a FST that will
convert an interval sequence to a pitch sequence. When we construct the trans-
ducer, we need to know the chosen fundamental pitch from the training data. Such
a transducer will be restricted to give as output pitch sequences that fall within
a certain range. The transducer approach will therefore not work for arbitrary
interval sequences. However, we assume that the pitch sequence that corresponds
to an appropriate interval sequence will fall into the range of pitch sequences in the
training data. The advantage of the transducer representation is that we can later
compose such an FST with other models.

We can also construct a model that uses the Markov chains for pitches and for
intervals. To do so, compose the interval WFSA, the interval-to-pitch FST and the
pitch WFSA. By sampling from that transducer we will generate sequences that
satisfy the MC probability distribution of the pitches and of the intervals.

5.7 Conclusion

We described the implementation of a Markov model for melody generation. De-
spite the simplicity of the model we can generate melodies that shows good lo-
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cal structure. Due to the emergent properties of music, many of these generated
melodies will not sound well, but others will exhibit, to the experienced listener, a
form of structure or meaning that goes beyond the local dependencies modelled by
the Markov model.

The main steps of the modelling process and its implementation described here,
in the context of Markov models, are followed by the models that we describe in
the following chapters.



Chapter 6

Markov Modelling of Harmony

6.1 Chord analysis

To model the harmony, we must �rst analyse the chords in the music piece. An
extensive analysis of chord recognition procedures is given by Jiang [30]. We pro-
ceed as follows: We try to assign a chord to every beat in the music piece. By
a beat we mean one of the divisions of a bar, which length is indicated by the
denominator of the time signature. So for 4-4 time, the beat is a crotchet. We use
a template-based method: We assign one of a prede�ned collection of chords to the
beat. The possible chords are the empty chord (meaning no chord is classi�ed),
the 12 major chords and the 12 minor chords. It is also possible to extend these to
other chords such as diminished, augmented and added seventh chords, but these
are not very common in classical music and can usually be regarded as similar in
function to that of a related major or minor chord.

The chord representation used is as follows: We have an integer vector of 12
elements, one for each of the pitch classes. In each vector entry we store the
total duration of notes in the beat that are in a pitch class. We use a scale of 12
subdivisions of a beat, so one note sounding for the full beat value adds 12 to the
value of some vector entry. Pitch classes that occur for longer and in more notes in
the chord are weighted more in the vector. For our prede�ned chords, we give the
tonic a value of 24, as a note that occurs twice, and the other two tones a value
of 12. This corresponds to the standard representation of the chords in four-part
harmony.

To do chord classi�cation for a beat we compute the Euclidean distance between
the chord representation vector of the beat and each of the template chords. We
classify the chord of the beat to the chord template with the least distance to the
chord representation vector. However, this distance needs to be greater than the
distance of the chord representation vector to the empty chord vector, else no chord

30
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is assigned to the beat.
In order to be able to model the relationship between chords and melody notes,

we also choose, for every beat, a representative note from the melody voice. We
choose the note that has the longest duration in the beat, the �rst one occurring
breaking any tie. This is the note that is most likely intended to sound together
with the chord. If, however, the pitch class of this note does not occur in the
classi�ed chord of the beat, we try to choose another note from the melody in that
beat which pitch class is in the chord. Otherwise, we remove the chord classi�cation
for purposes of training our model. The reason for this is that in music generation
we want to choose chords that sound with the melody notes, and when assigning
chords we work again with representative notes of the melody. We do not want
to train our model to explicitly allow such dissonances, as it will not contribute to
generating harmonious music.

The results of our chord classi�cation are satisfactory. Though we did not
formally analyse the accuracy, when the melody is reconstructed with the classi�ed
chords, the result sounds very similar to the original harmonization.

The representation of chords in our text �les is given by �c� followed by a string
representation of the chord, or �r� for a rest chord. To get the string representation,
for every pitch class that appears in the chord a letter �A� to �L� representing that
pitch class is added, in alphabetical order.

6.2 Chord generation

We model the relationship between pitch and chords with an HMM, in a similar
way to how we modelled the relationship between pitch and rhythm. Here, for
pitch we are working with the representative pitch sequence described above. We
�nd the representative pitch sequence with the class ConvertRepNotes.

We want to �nd the optimal harmonization of our melody, i.e., the chord se-
quence that will maximize P (C,N), where C is the chord sequence and N the note
sequence. Let the chord sequence be modelled by the hidden states of an HMM and
the note sequence by the emission sequence. Then, using the Viterbi algorithm, we
can �nd the optimal chord sequence for a given note sequence. We follow broadly
the same approach as proposed in [3].

The class ChordToPitchTransducer constructs an WFST to convert chord
sequences into pitch sequences. We use a form of additive smoothing to let every
chord map to every pitch in the range of melody pitches that is is the pitch class
of one of the chord notes. We add 1 to the count of each of these pitches. We use
these modi�ed counts to compute the transition probabilities of the WFST.

The composition of this WFST and aWFSA for chords forms the hidden Markov
model. We then use the Viterbi algorithm to �nd, for the given representative pitch
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sequence, the optimal chord sequence for the probability distribution that the HMM
represents.

6.3 Multiple voice generation

The standard harmonization procedure in western classical music is that of four-
part harmony. So we extend our chord generation model to generate three accom-
paniment voices to the melody.

Firstly, we generate a bass voice. In the training data, we identify the base voice
as the voice that is, on average, the lowest in a music piece. We construct a Markov
model for the representative notes of the bass voices in the training data. We use
the class ChordToBassTransducer to model the distribution of bass notes that
occur with every assigned chord in the training data. We add the extra restriction
that we only accept bass notes that are in a pitch class of the chord it is associated
with. Implicitly, we also model the concept of chord positions (root position, �rst
inversion, second inversion). The chord position is determined by the pitch class
of the chord that is the bass note of a chord con�guration. We then use an HMM
that have the chord sequence as hidden sequence and the bass note sequence as
observed sequence, to generate the bass line (a bass note for every beat).

Then we generate two inner voices that, together with the melody and bass
voices, gives the implied harmony of the chord at each beat. We model this in
two steps. First, we construct a customized FST that encode all the valid inner
voice sequences. The lower of the voices (the third voice) in the input sequence
and the higher voice (the second voice) is the output sequence. We accept voice
con�gurations at each beat that satisfy the following restrictions:

1. None of the four voices ever cross each other. Therefore the second voice
must always be lower than the melody, and the third voice must be higher
that the bass note but not higher than the second voice.

2. All three pitch classes of the chord should be contained in the four notes at
the beat. We do not place a restriction on which pitch class may appear
twice, but do we allow any pitch class to be left out.

Secondly, we construct a WFSA that will accept inner voices with good voice
leading. As we cannot in general identify the second and third voices in the training
music pieces, we construct and train the model from all voices in the input pieces.
We then compose the inner voice FST from left and right with this automata, and
sample the best input/output sequence pair from the composite automata. We
therefore �nd the most acceptable inner voices that will produce the harmony of
the generated chords. In this respect, our model is more powerful than the chorale
harmonization model proposed in [3].
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6.4 Ornamentation

In general, accompaniment voices are not played in blocks, at every beat in the
music. Notes repeated on the same pitch may be combined into one longer note,
and extra notes can be inserted to improve voice movement (the most common
example is to insert a middle note if there is an interval of a third between two
notes). We model this ornamentation of the accompaniment voices with an HMM.
To do so we �rst encode the pitch and rhythm of a note sequence in a beat as a
single symbol string. The notation we use is as follows:

� For a rest: �r� and the rest duration.

� For a note that is played: �p�, the pitch value, �s� and the note duration.

� For a note hold on from the previous beat: �q�, the pitch value, �s� and the
note duration.

All durations are only for the current beat.
We construct a Markov model of all voices in the training data represented

in this format. Then we construct, with the class RepsToNotesTransducer, a
WFST to model the possible ornamentations associated with each of the repre-
sentative notes of every voice. We compose these models to form an HMM to
convert representative note sequences of the three accompaniment voices into or-
namented note sequences. During synthesis we decode the ornamentation sequence
notation to pitch-rhythm pairs. We give a graphical model representation of our
harmonization model in �gure 6.4.1.

6.5 Conclusion

A limitation to our harmonization model is the inability to model the parallel or
diverging movement of pairs of voices. An example of the importance of this in
music is the harmonic principle that parallel voice movements, in intervals of �fths
or octave, should be avoided. The model can also be extended to include the
principle that intervals between inner voice notes should be as small as possible.

We saw that to do 4-voice harmonization we had to make a special construction
and exploit certain properties of the common harmonization process. In general, we
would like to be able to generate n accompaniment voices that all have acceptable
voice leading and can simultaneously model dependencies in movement between
pairs of voices. To do that, we will need to use a more powerful model than a
transducer. Directed graphical models, which generalize the algorithms used in
HMMs, should be investigated in future work to overcome these model limitations.
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Figure 6.4.1: Graphical model for harmonization



Chapter 7

Abstract Melody Clustering Music

Generation

7.1 Abstract melodies

In models for Jazz improvisation proposed in [15] and [24], notes are labeled with
tone categories. These categories are based on the relationship between the pitch
of a note and the chord that the note is played over. We simplify these categories
to tone categories that are appropriate for classical music:

� C, a chord tone. The pitch class is in one of the pitch classes of the chord.

� A, an approach tone. The note �approaches� a chord tone. It precedes or
follows a chord tone, and di�ers by one or two semi-tones from it.

� X, an arbitrary tone. Any note that is not a chord tone or an approach tone.

� R, a rest.

Note that the concept of a color tone used in Jazz music is not applicable to classical
music.

We want to describe the melody in an abstract way. We use three elements:
The note category, the interval between notes, and the duration of each note.

Gillich et al [24] use the concept of a slope, a subsequence of melody notes that
unidirectional, i.e., either all intervals between them are positive (an ascending
sequence) or all intervals are negative (a descending sequence). The melody is
segmented into slopes, and each slope is describe by the range of intervals in the
slope, and the note category and duration of each note. However, in our model
we do not work directly with slopes. Rather, for every note we store the interval
associated with it (the interval between the previous note and the current note).

35
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Later, in one of our music generation models, we will introduce a mechanism to
relax the intervals in an abstract melody.

To construct a grammar for the abstract melodies, we break the melody up into
time windows of prede�ned length. Gillich et al found that 4-beat fragments in
the 4/4 meter (equivalent to the length of 1 bar) achieve the best balance between
continuity and originality. Therefore we see bars as natural divisions of a music
piece, and we use bars of abstract melodies to train our model.

7.2 K-means clustering

To express in our model the concept of reoccurring similar fragments of music, we
cluster similar abstract melodies together. Note that, in [24] the goal of clustering
is to increase the variety in the recombination of melodic ideas when generation is
done from a Markov chain. However, we want to go further than that and use the
concept to model reoccurring melodic ideas in music pieces.

We use the k-means clustering algorithm (see a description in [13]) to cluster
the abstract melody bars into k clusters. For the algorithm, we need to represent
each contour as values on an n-dimensional plane, and de�ne a distance metric
between such n-tuples. Here we use the Euclidean distance metric and represent
each abstract melody by 7 parameters (based on [24]). The note durations are
scaled (as double value) such that the length of a beat is 4. The parameters are:

1. The number of notes in the abstract melody.

2. The location of the �rst (non-rest) note in the bar.

3. The total duration of rests.

4. The average maximum slope: For each of the slopes in the abstract melody,
we �nd the absolute maximum interval between notes. Then we take the
average of all those maximum values.

5. Whether the �rst note is at the start of a beat (0) or o�-beat (1).

6. The number of times the interval contour changes direction.

7. The consonance: For each note, we compute the note duration times a co-
e�cient for the note category. We choose the coe�cients as 0.8 for a chord
note, 0.6 for an approach note and 0.1 for an arbitrary note. The consonance
is the sum of these values. It is an indication of how �pure� the notes are in
relation with the chords.
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K-means clustering is an EM algorithm. Every abstract melody is represented
by a vector of size 7 as described above. The number of clusters is predetermined.
We use a �rule of thumb� to choose the number of clusters: k =

√
n
2
, where n is

the number of distinct abstract melody vectors. As the initial step, we choose for
every cluster a random vector as mean element. Then we apply the 2 steps of the
EM algorithm iteratively:

1. Expectation step: We assign every vector to a cluster j such that the (Eu-
clidean) distance between the vector and the mean vector of cluster j is a
minimum.

2. Minimization step: We update the cluster means by calculating the mean of
all the vectors assigned to that cluster.

The objective score is the total distance of all the vectors to their cluster means.
We iterate the algorithm until the change in the objective score falls below a certain
threshold.

The algorithm, with the vector representation described, shows good conver-
gence and is scalable for di�erent choices of number of cluster. We represent an ab-
stract melody with the class Contour. We represent a cluster of abstract melodies
with the class ContourCluster.

7.3 Markov chains for music generation

The basis for our generation model is a higher order Markov chain of the clusters of
abstract melodies. To construct this model, we analyse all the training music pieces
to construct abstract melody sequences. Then we cluster the abstract melody bars
with the k-means clustering algorithm, using the ClusterContours class. The �le
slope-clusters.info is written out. We store, for every cluster, all the abstract bar
melodies in that cluster, as well as the number of times each of the abstract melodies
appear in the training data. We then re-analyse all the melodies in the training
data to �nd for each melody the cluster sequence of the abstract bar melodies.
Then we build a Markov model from those cluster sequences.

The class SampleFromSlopesTransducer constructs a WFSA that encodes
the abstract melodies for each of the clusters. The probability of each abstract
melody for a given cluster is determined by maximum likelihood estimation.

Now, when we use a generated abstract melody to generate a concrete melody,
there are two approaches: We can �rst generate chords independently of the ab-
stract melody and then choose notes that satisfy the note categories of the abstract
melody over the chords, and satisfy the intervals in the abstract melody as close as
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possible. The second approach is that we generate a concrete melody from the in-
tervals of the abstract melody, disregarding note categories. We can then generate
chords to harmonize the abstract melody.

In the approach where chords are generated independently, we construct an
FSA that encodes the possible pitch sequences that satis�es the tone category
sequence in the abstract melody, over the given sequence of chords. The class
TerminalPitchAcceptor construct such an FSA for the given abstract melody
and chord sequence. The chord sequence is generated by a Markov chain that is
constraint by the length of the piece (in number of bars) that we want to generate.
A chord is generated for every beat, as in our other chord models.

In general we have the problem that we will not be able to �nd a pitch sequence
from those possible pitch sequences that will satisfy the tone category sequence and
the interval sequence in the abstract melody. To address this problem, we allow
for the relaxation of intervals in the interval sequence. We construct a single-state
WFST that will change the value of an interval with a penalty probability. We only
allow an increasing interval to be changed into another increasing interval, and a
decreasing interval to be changed into another decreasing interval (to preserve the
contour of the abstract melody). We also limit the number of semitones that we
can change the interval with to 7. To an interval change of i semitones we give a
weight of 2−i.

To generate a pitch sequence that satis�es the above constraints as well as
possible, we construct (on the �y) a transducer cascade from the composition of the
interval-relaxer WFST, the interval-to-pitch FST and the pitch sequence acceptor
based on tone categories. We give the interval sequence of the abstract melody as
input to this cascade, and sample as output the best pitch sequence that satis�es
these constraints (if such as sequence exists).

In the approach where we do not take chords into consideration, we just need
to convert the intervals in the generated abstract melody into pitches, using the
interval-to-pitch FST.

In either of the models, we can use the harmonization model described in chapter
6 to generate accompaniment voices for the generated chords. We give graphical
model representations for the models in �gures 7.3.1 and 7.3.2.

7.4 Other clustering methods

We did also investigate other approaches for clustering. One proposed way is to
construct a vector that describes the abstract melody at �xed time steps by the
interval change in pitch at each time step. However, in this case we have to modify
the concept of the mean of the vectors in a cluster. One approach that we experi-
mented with is to choose as mean of a cluster the vector in the cluster that has the
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Figure 7.3.1: Graphical model for chord-dependent abstract melody generation

minimum total distance to the other vectors in the cluster. Another approach is to
eliminate the calculation of mean vector. Rather, in each iteration of the algorithm,
compute the total distance of each vector to all the vectors in each of the clusters,
and then assign the vector to the cluster to which it has the least total distance.

In our experiments, however, both these approaches either did not converge
properly or assigned almost all the vectors to two or three clusters and only a
few to each of the other clusters. There may be situations where we want such a
clustering, but in this case we want to spread the abstract melodies as evenly as
possible among the di�erent clusters.

7.5 Conclusion

This model remains in essence just a sophisticated Markov model. To show that the
model succeeded in modelling the internal similarities in music pieces, we need to
see that some clusters appear multiple times in our generated music. The choice of
the number of clusters is very important: If there are to many clusters, the chance
of having repeated clusters in a generated music piece is very small. If the number
of clusters is too small, the abstract melodies inside clusters will di�er by too much
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Figure 7.3.2: Graphical model for chord-independent abstract melody generation

to model similarities between bars. However, by choosing appropriate parameters
and generating longer pieces of music, we were able to see in generated pieces the
non-local dependencies that we set out to model.



Chapter 8

Context-free Grammar Model

8.1 Rhythm model

We constructed a context-free grammar for rhythm that is based on the principle
of the hierarchical organization of rhythm: every note can be divided into two (or
three) notes that is each half (or a third ) of the duration of the original note.

In this CFG the non-terminals are B, the initial non-terminal, M, the non-
terminal representing a bar of notes, and non-terminals in the form �S[n]�, where
�[n]� is the note duration that the non-terminal represents. The terminals are our
standard representation for note duration: �s[n]� for a note and �r[n]� for a rest.

Our initial rules are in the form B → M M . . .M , where the number of M's
are the number of bars in the piece. In the grammar that we train we have such
a rule for every possible piece length in the training data. When we generate a
piece consisting of a certain number of bars, we replace the initial rules with only
one initial rule to enforce that number of bars. Note that in this model all our
training data must be preprocessed to have only full bars. Therefore we cannot
model upbeats with this grammar.

Alternatively, it is possible have rules B → M B and B → M that can model
an arbitrary number of bars. However, these rules will create a comb structure
that will increase the complexity of our tree. For computational reasons we want
to keep our tree structure as simple as possible.

We construct a CFG for every meter of pieces in the training data. M only
occurs on the left side of one production rule: M → S[n], where n is the bar
duration in the time signature we are working in.

The production rules to replace non-terminals that represent duration with more
non-terminals that sum to the same total duration are in one of the following forms:

� S[2 · x]→ S[x] S[x]

41
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� S[4 · x]→ S[x] S[2 · x] S[x]

� S[4 · x]→ S[3 · x] S[x]

� S[4 · x]→ S[x] S[3 · x]

� S[3 · x]→ S[2 · x] S[x]

� S[3 · x]→ S[x] S[2 · x]

� S[3 · x]→ S[x] S[x] S[x]

Note that we structure the rules to prevent ambiguous derivations as far as pos-
sible. We also allow for the construction of triplets and dotted note durations. To
construct the production rules we use the durations of all the notes, not longer than
a bar, in the input data, and their reachable note divisions (by recursively applying
the rules). For every duration non-terminal we have a rule that substitutes it with
the corresponding note duration terminal, and another one for the corresponding
rest duration terminal.

8.2 Interval-based pitch model

We base our pitch generation CFG on the one proposed by Gibert and Conklin
[26]. Their grammar is based on the concept of melodic reduction: Often in music,
a melody can be made more interesting by inserting a note between two existing
notes. If we inverse that process, we can reduce a given melody to a compact
structure. We want to encode this intuition as a probabilistic CFG. However, we
cannot directly have a context-free production that replace a pair of notes with
three notes, as context-free production rules may only have one non-terminal on
the left-hand side. But if we represent the pitch sequence as a interval sequence,
we can de�ne such rules, by replacing an interval with two intervals that sum to
the original interval.

At the highest level of our grammar we generate a sequence of uniform non-
terminal symbols, each which can be substituted with any non-terminal interval.
Each of these non-terminals are then, by applying recursive rules, replaced with an
interval sequence that sum to the interval represented by the original non-terminal.

For notational convenience we represent in the chapter interval non-terminals
with �I[n]�, where n can be positive or negative. However, in our implementation
we represent negative intervals with �J[-n]�, so that the integer part is non-negative.
Our initial non-terminal is S and the initial rules are S → I S (the �new rule�)
and S → I. Therefore we can replace S with an arbitrary sequence of I's, since
we do not know beforehand how many I's there will be in the parse of a melody.
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Therefore we cannot �atten the tree structure created by the CFG as we did in the
case of rhythm. The comb-like structure of the trees is computationally expensive
when we later train our model.

We work within a certain range of intervals: [26] proposes −24 to 24, and in
our Bach chorale training data that turned our to be the approximate range of
intervals in the melodies. We have a rule I → I[n] for every interval in the range.
We can also replace every non-terminal interval with the corresponding terminal
for that interval. The terminal interval notation is the same as for earlier models:
�i� followed by the interval value is an increasing interval, and �j� followed by the
absolute interval value is a decreasing interval.

We have non-terminal interval substitution rules of the forms:

� Repeat rule: I[n]→ I[n] I[0]

� Neighbour rule: I[0]→ I[n] I[−n], |n| ≤ 5

� Passing rule: I[n]→ I[n1] I[n2], n1 + n2 = n, n1 · n2 > 0, |n| ≤ 7

� Escape rule: I[n]→ I[n1] I[n2], n1 + n2 = n, n1 · n2 < 0, |n| ≤ 4

We assign prior weights to each rule, mainly to minimize the number of times
the new rule is applied. S → I S has weight 0.1, S → I has weight 0.9 and every
rule I → I[n] has weight 0.1. The repeat rules and neighbour rules have weight
0.75, while the passing and escape rules have weight 0.5.

8.3 Training the CFGs

We use Tiburon to train our grammars, since it has build-in functionality to train
a CFG given the CFG production rules and training sentences. However, if we use
this, Tiburon fails to assign meaningful probabilities. We therefore implement the
EM algorithm for CFG grammar training as described in [16], using other Tiburon
commands.

We iterate over the following steps:

1. Expectation step: For every training sequence, we �nd the n most likely parse
trees over the current PCFG.

2. Maximization step: We reestimate the probability of each rule in the PCFG
by maximum likelihood estimation over the parse trees.

To do parsing with Tiburon, we convert the CFG to an equivalent tree-to-string
transducer. By composing that transducer on the right with a string (training
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sequence), and sampling from the composition, we get the n most likely parses for
the string. We store these parses in a temporary �le. Next we train the tree-to-
string transducer on all of these sentences with the parse trees that we found for
them. We can convert the transducer, with re-estimated weights, back to a PCFG.

8.4 Melody generation

We use Tiburon to sample interval and rhythm sequences from the trained CFGs.
We described earlier how we limit the rhythm generation to a �xed number of bars.
Next, we want to generate an interval sequence that has the same length as the
generated rhythm sequence (excluding rests). We convert a copy of the rhythm
sequence to a sequence of �s� symbols of the same length. We modify the �nal
trained interval tree-to-string transducer such that the string it produces will consist
of �s� symbols, instead of terminal intervals. We compose that transducer with the
string of �s� symbols, and we take the yield of a sampled tree from that composed
transducer. This gives an interval sequence of the required length. Note that this
model does not model the probability distribution of intervals given rhythm.

The interval sequence can be converted to a pitch sequence as before, and we
can harmonise the generated melody with our Markov model for harmonization.
We give a graphical model representation of the melody generation model in �gure
8.4.1.

melody_rhythm

melody_intervals

melody_rhythm_pitch

melody_pitch

Figure 8.4.1: Graphical model for CFG model
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8.5 Conclusion

Context-free grammars for music are able to assign meaningful structure to mu-
sic pieces. They are also more powerful than Markov models in the formal lan-
guage description of the music they can generate. An example of an important
non-regular structure in music that our interval model can generate, is than of
{anbn|a = i[n], b = i[−n]}.

However, in our music generation experiments, the music that this CFG model
generate is not very interesting. It assigns high probabilities to music that shows
regularity, but the variation between expected and unexpected motives in a music
piece adds a lot of richness to a music piece. A CFG also cannot express well the
concept of repetitions of longer phrases in music that it generates.



Chapter 9

Composer Recognition

9.1 The classi�cation problem

Suppose we have training data from k composers C1, C2, . . . , Cn, and we construct,
for each composer, a generative model for the pieces of the composer. Then, given a
music piece for testing, we want to classify that music piece to one of the composers.
Bayes' rule gives that:

P (Ci|x) ∝ p(x|Ci)P (Ci)

We assume that the prior probabilities of all the composers are the same (though
it would also be possible to let the prior of a composer represent the popularity
of the composer or the number of pieces he wrote, relative to the other composers
that we model). Therefore the classi�cation problem is equivalent to maximizing
p(x|Ci), which is the probability assigned to piece x by the generative model for
composer i.

We use the Markov model for melody as generative model for composer recog-
nition. However, our model should, as far as possible, assign a non-zero probability
to every piece that it is given. The reason the higher order Markov model we used
in our music generation models will not always do so, is due to the sparsity of
n-grams in the training data. It is reasonable to assume that all the pitches in the
testing melody will occur at least once in the training melodies of the composer
model, but we cannot make that assumption for n-grams.

9.2 Katz's back-o� model

To overcome the sparse data problem, we use Katz's back-o� model [31], one of
the most widely used smoothing methods in the construction of language models
for speech recognizers.
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The main idea is that if a k-gram does not occur in the training data, we back

o� and use the model for the k − 1-gram that has the same su�x. The back-
o� process can be done recursively until we �nd a matching gram. To allow for
this process, we need to decrease the probability given to some of the n-grams
by maximum likelihood estimation and redistribute the �freed� probability to the
back-o� transitions. The main equation for the back-o� probability is:

Pback-o�(w1|wi−n+1 . . . wi−1) =

{
dwi−n+1...wi

c(wi−n+1...wi−1wi)
c(wi−n+1...wi−1)

, c(wi−n+1 . . . wi) > k

αwi−n+1...wi−1
Pback-o�(wi|wi−n+2 . . . wi−1) , otherwise

The default value for k, that we will use, is 0. c is the number of occurrences
of the given n-grams. d is the discount coe�cient of the n-gram. The model uses
Good-Turing estimation to compute the discount coe�cient. The Good-Turing
discount of the n-gram is

d =
c∗

c
where

c∗ = (c+ 1)
Nc+1

Nc

and Ni is the number of n-grams that occur exactly i times in the training data.
To determine the value of α, it is convenient to �rst de�ne a function β:

βw1...wm−1 = 1 −
∑

wm: c(wm)>0

P (wm|w1 . . . wm−1)

Which is the total weight that is freed. Then we for α we have

αw1...wm−1 =
βw1...wm−1∑

wm: c(wm)=0 P (wm|w2 . . . wm−1)

Now, in general, when we compute Good-Turing estimates, there will be cases
where, for an n-gram that occurs r times, there will be no n-gram that occurs
r + 1 times. The re-estimated count will then be 0. To address this problem,
Katz proposes that we do not reestimate n-grams whose counts are higher than a
threshold value r, considering their maximum likelihood estimates as reliable. We
choose the threshold as 5. The discount coe�cient for re-estimated n-grams is then

dc =


c∗
c
− (r+1)Nc+1

N1

1− (r+1)Nc+1
N1

, 1 ≤ c ≤ r

1, c > r

We also implemented a simpler back-o� model. From every n-gram, we back o�
to the corresponding 1-gram with a probability of 0.01. The problem with such a
model is that there may arise cases where a higher probability is assigned to a path
that goes through a back-o� state than to a (possible) path that does not include
a back-o�. In such a case we throw away valuable n-gram information.
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9.3 Recognition training and testing

To test our generative model for recognition, we use the standard approach of
dividing our music pieces into training and testing data. We do that with the
SplitTrainingTesting class. The splitting ratio is 70% training data and 30%
testing data, and the splitting is done stochastically. For the basic model that we
use, we �rstly train a melody pitch Markov model with Katz smoothing for the
training pieces of each composer. Next we analyse all the testing pieces. For each
of the generative models, we use Carmel to compute the likelihood of every testing
piece. We use log likelihoods for accurate representation of the probabilities (which
can be very small). Then we classify each testing piece to the composer whose
generative model assigns the highest probability to the piece.

9.4 Results

We test our model by classifying some classical music pieces.
Our �rst test is with Bach Chorales and the Händel Messiah. Both are Baroque

composers. For a model with major pitch sequences, we use 300 Bach Chorales
and 45 pieces from Hädel's Messiah. The Bach Chorales in the testing data are
classi�ed very accurately, but the Händel Messiah pieces not so accurate. See table
9.4.1 for the classi�cation results.

Data set Bach Händel Not classi�ed
Bach Chorales 92.13% 7.87% 0%
Händel Messiah 42.86% 50% 7.14%

Table 9.4.1: Bach/Händel composer recognition

In our second experiment we classify data sets of Mozart Symphonies, Beethoven
Piano Sonatas and Tchaikovsky's Swan Lake. Mozart and Beethoven are both
classical period composers, and Tchaikovsky is a romantic period composer. Note
that our model is not able to classify the Mozart Symphonies successfully to Mozart,
but it is able to distinguish that it is in by a classical composer and not by a romantic
composer. For the major pitch model we use 54 Mozart pieces, 45 Beethoven Pieces
and 15 Tchaikovsky pieces. See table 9.4.2 for the classi�cation results.

In our third experiment we classify data sets from the Händel Messiah, Mozart
Symphonies and Schubert Piano Sonatas. Händel is Baroque, Mozart is classical
and Schubert is romantic. Here our model can more clearly distinguishing between
composers of di�erent musical style periods. For the major pitch model we use 45
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Data set Mozart Beethoven Tchaikovsky Not classi�ed
Mozart Symphonies 47.06% 52.94% 0% 0%
Beethoven Piano Sonatas 0% 85.71% 0% 14.29%
Tchaikovsky Swan Lake 0% 0% 75% 25%

Table 9.4.2: Mozart/Beethoven/Tchaikovsky composer recognition

Händel pieces, 54 Mozart pieces and 36 Schubert pieces. See table 9.4.3 for the
classi�cation results.

Data set Händel Mozart Schubert Not classi�ed
Händel Messiah 64.29% 7.14% 28.57% 0%
Mozart Symphonies 17.64% 70.59% 11.65% 0%
Schubert Piano Sonatas 0% 9.09% 90.91% 0%

Table 9.4.3: Händel/Mozart/Schubert composer recognition

9.5 Conclusion

Our experiments have shown that the approach to composer recognition we followed
is successful. It is more capable of distinguishing between composers of di�erent
styles of composition than between composers of the same style of music. Due to
time constraints in this project we did not investigate the classi�cation accuracy of
other generative models that may improve the accuracy of our model.



Chapter 10

Bacchus

We describe BACCHUS (Bach-inspired Algorithmic Computer Composer and Har-
monizer , University of Stellenbosch), the application we wrote to implement the
models described in the previous chapters.

10.1 Java class structure

Table 10.1.1 summarises all the classes in the Java part of our application.
A summary of the package structure of the implementation is given as a directed

acyclic graph in �gure 10.1.1. An arrow from A to B indicates that classes in
package A are imported in classes in package B. jm is the external package JMusic.

bacchus.model.acceptor

bacchus.model.transducer

bacchus.model.grammar

bacchus.process.analysis

bacchus.process.generation

bacchus.process.recognition

bacchus.data.music

bacchus.data.pattern

jm

Figure 10.1.1: Java package structure
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10.2 Bash Scripts

We brie�y describe the functionality of each of the Bash scripts that we use in the
execution of the generation and classi�cation tasks of the application.

10.2.1 bacchus-markov

Constructs the Markov models for melody and harmony generation. The usage
description of the script is:

Usage: bacchus-markov.sh [--analyse|--train|--generate|--all|--help] [OPTION]...

Options

--datapath, -dp data path

--resultspath, -rp results path

--compositionname, -n composition name

--meter, -m time signiture

--bars, -b number of bars

--barrestrict, -br enforce bars

--nobarrestrict, -nbr do not eforce bars

--wholebarrhythm, -wbr bar-based rhythm generation

--standardrhythm, -sbr standard rhythm generation

--mcorder, -o Markov chain order

--hmcorder, -ho harmony Markov chain order

--cadences, -c enforce cadences

--no-cadences, -nc do not enforce cadences

--hmm HMM melody model

--cmm pitch-rhythm pairs model

--interval, -i use intervals for pitch generation

--inner, -inn generate inner voices

--noinnner, -nin no inner voices

--major, -maj major key

--minor, -min minor key

--harmonize, -har harmonize

--noharmonize, -nhar do not harmonize

--key, -k key signature integer

10.2.2 bacchus-clustering

Constructs the abstract melody clustering models for music generation. The usage
description of the script is:
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Usage: bacchus-clustering.sh [--analyse|--train|--generate|--all|--help] [OPTION]...

Options

--datapath, -dp data path

--resultspath, -rp results path

--compositionname, -n composition name

--meter, -m time signiture

--bars, -b number of bars

--mcorder, -o Markov chain order

--hmcorder, -ho harmony Markov chain order

--cadences, -c enforce cadences

--no-cadences, -nc do not enforce cadences

--hmm HMM melody model

--inner, -inn generate inner voices

--noinnner, -nin no inner voices

--major, -maj major key

--minor, -min minor key

--harmonize, -har harmonize

--noharmonize, -nhar do not harmonize

--chordsfirst, -cf chord-dependent generation

--chordslast, -cl chord-independent generation

--key, -k key signature integer

10.2.3 bacchus-tree

Constructs the CFG models for music generation. The usage description of the
script is:

Usage: bacchus-tree.sh [--analyse|--train|--generate|--all|--help] [OPTION]...

Options

--datapath, -dp data path

--resultspath, -rp results path

--compositionname, -n composition name

--meter, -m time signiture

--bars, -b number of bars

--flatten, -f flatten the tree represntation

--interval, -i model intervals

--rhythm, -r model rhythm

--major, -maj major key

--minor, -min minor key
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--harmonize, -har harmonize

--noharmonize, -nhar do not harmonize

--inner, -inn generate inner voices

--noinnner, -nin no inner voices

--key, -k key signature integer

10.2.4 bacchus-recognize

Constructs the Markov model for composer recognition. The usage description of
the script is:

Usage: bacchus-recognize.sh [--analyse|--train|--test|--all|--help] [OPTION]...

Options

--datapath, -dp a data path (for every data set to be used)

--resultspath, -rp results path

--meter, -m timeSigniture

--major, -maj major key

--minor, -min minor key
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package package class
data music Chord
data music Convert
data music MusicPiece
data music Voice
data pattern ContourCluster
data pattern Contour
data pattern Gram
data pattern NGram
data pattern NGramModel
model acceptor BarLengthAcceptor
model acceptor InnerVoiceAcceptor
model acceptor NumberOfBarsAcceptor
model acceptor NumberOfChordBarsAcceptor
model acceptor NumberOfSlopesAcceptor
model acceptor NumberOfWholeBarsAcceptor
model acceptor TerminalPitchAcceptor
model grammar IntervalCFG
model grammar RhythmCFG
model transducer ChordToBassTransducer
model transducer ChordToPitchTransducer
model transducer IntervalToPitchTransducer
model transducer IntervalToRhythmTransducer
model transducer PitchToRhythmTransducer
model transducer RelaxIntervalsTransducer
model transducer RepsToNotesTransducer
model transducer SampleFromSlopesTransducer
process analysis Analyse
process analysis ClusterContours
process analysis CountNGrams
process generation ConvertPairs
process generation ConvertRepNotes
process generation SampleTempo
process generation Synthesize
process recognition Recognize
process recognition SplitTrainingTesting

Table 10.1.1: Java classes in package bacchus
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Conclusion

11.1 Evaluation of generated music

The best judge of generated music is the experienced listener, described in [7]. A
proposed way to evaluate the generate music of a model is to let a person with
a considerable amount of knowledge of music listen to some generate pieces, and
then judge the success of style imitation of the training data of the model.

A second approach is to perform a partial Turing test, as suggested by [10].
However, we propose that such a Turing test should be performed on a group of
people with some experience of listening to music. A good example for such a group
of people is a choir.

11.2 Future work

There are several avenues for future work on generative models of music and the
implementation of such systems. We mention here a few possibilities.

11.2.1 Music piece processing

Methods for precise preprocessing of the MIDI music pieces should be investigated.
In general, we cannot make assumptions about the meaning of parts and phrases in
the piece. A proper analysis should be able to merge non-overlapping phrases and
address the problem that melody and the base notes may be spread across di�erent
parts in the piece.

The key signature of a piece is not always be indicated in its MIDI �le. The
key can also change during the piece. Probabilistic models for key-�nding, such as
the one proposed in [32], should be used in music analysis tasks.
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11.2.2 Markov modelling

When we want to generate chords independently of melody pitches, a Markov model
may not be the most appropriate way to model chords that give structure to the
music piece. Models for chords generation should be investigated. One possibility
is to investigate a way to use the distance between chords given by the circle of

�fths.
Not much research have been done on the e�ect of di�erent methods of sam-

pling from generative models on music generation. As mentioned in chapter 4,
sophisticated sampling methods can increase the quality of generated music with-
out hindering the creativity of the model.

11.2.3 Beyond context-free grammars

A big limitation of context-free models is illustrated by the fact that the language
{ww|w ∈ {a, b}∗} is not context-free. The notion of a repeated phrase in the
structure of music pieces is very important, and if we are to model the overall
structure of longer music pieces we will have to take that into account.

We propose to use a copying tree transducer to generate such structures. Firstly,
we use a Markov model to generate, some phrases of music that are independent
of one another, labeled A,B,C, . . .. We encode these generated phrases into a
trees: The phrase labels A,B,C, . . . are children of the root node. The terminal
sequence of notes for each phrase becomes the (ordered) children of the phrase
label. We give this tree as input to a tree-to-tree transducer that will copy some
of the phrases. Each of the possible copying patterns are assigned a probability.
Some of the proposed patterns are:

� A→ A A

� A B → A B A

� A B → A B A B

� A B C → A B A C A

These rules can also be applied recursively by repeatedly applying the trans-
ducer to the output tree. In an implementation one would also want to be able to
let the user specify the structure with some domain-speci�c language.

To make this model more powerful, we want to use it to extend our abstract
melody model. In our tree representation, we want to put the cluster labels as the
children of the phrase labels. The notes in the abstract note sequence then become
the children of the cluster labels. We want to use the cluster labels to distinguish
between directly copying a phrase and copying it with variation. If we copy a
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phrase with variation, we only copy the cluster label sequence of that phrase. Then
after we applied the tree transformation, we generate melodies for the parts of the
tree that are variations and have cluster labels as leaves.

To use this model to encode local and global dependencies, we will need to
encode a Markov model for melody as a tree acceptor that we can compose with
the tree transducer that we described.

11.3 Conclusion

As we mentioned in chapter 1, this project builds on the work done by two previous
students at Stellenbosch University. The research that we have done in this project
makes the following additions to their work:

� We were able construct models from large corpora of music, by automated
preprocessing of the music. This allowed use to model the works of well-known
composers.

� We introduced a sophisticated model for four-part harmonization. Schulze
only generates two-part music: A melody and accompaniment chords. Our
model also can also imitate four-part harmonization more closely than the
model proposed by Allan and Williams [3].

� We introduced a model that cluster abstract melody patterns and use the
clusters to generate music that takes a larger context into consideration. By
using transducer cascades, our model is formulated more precisely than that
of a similar model proposed recently in [24].

� We proposed a model with tree transducers that has the potential to model
the repetition of music phrases, with or without variation, while still mod-
elling local dependencies in the music.

� We applied our Markov models, with some success, to the problem of com-
poser recognition.

� Our extensive literature survey on generative models of music and related
concepts shows several paths for future work.

The goal of constructing a generative model for music is a very ambitious one.
As we saw in this project, such a model must be able to capture with rules that
are not unreasonably complex the creative process of music generation. A model
that assigns reasonable structure to a music piece will not necessarily be able to
generate interesting music, and vice versa. This is one of the reasons that a context-
free grammar often does not generate more acceptable music than a Markov model.
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Due to time restrictions we did not implement the tree transducer model we describe
above, which is more powerful than a CFG. The tree transducer model can be
used to generate music that imitates common overall patterns of organization in a
music piece. We can compose this model with a Markov model that model local
dependencies. By simultaneous modelling local and global dependencies in a music
piece, we can make a contribution to modelling that hidden arithmetic exercise
that let us create and enjoy music.
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