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Abstract

We investigate the application of weighted tree transducers to correcting grammat-
ical errors in natural language. Weighted finite-state transducers (FST) have been
used successfully in a wide range of natural language processing (NLP) tasks, even
though the expressiveness of the linguistic transformations they perform is limited.
Recently, there has been an increase in the use of weighted tree transducers and
related formalisms that can express syntax-based natural language transformations
in a probabilistic setting.

The NLP task that we investigate is the automatic correction of grammar errors
made by English language learners. In contrast to spelling correction, which can
be performed with a very high accuracy, the performance of grammar correction
systems is still low for most error types. Commercial grammar correction systems
mostly use rule-based methods. The most common approach in recent grammatical
error correction research is to use statistical classifiers that make local decisions about
the occurrence of specific error types. The approach that we investigate is related to
a number of other approaches inspired by statistical machine translation (SMT) or
based on language modelling. Corpora of language learner writing annotated with
error corrections are used as training data.

Our baseline model is a noisy-channel FST model consisting of an n-gram lan-
guage model and a FST error model, which performs word insertion, deletion and
replacement operations. The tree transducer model we use to perform error correc-
tion is a weighted top-down tree-to-string transducer, formulated to perform trans-
formations between parse trees of correct sentences and incorrect sentences. Using
an algorithm developed for syntax-based SMT, transducer rules are extracted from
training data of which the correct version of sentences have been parsed. Rule weights
are also estimated from the training data. Hypothesis sentences generated by the
tree transducer are reranked using an n-gram language model.

We perform experiments to evaluate the performance of different configurations
of the proposed models. In our implementation an existing tree transducer toolkit is
used. To make decoding time feasible sentences are split into clauses and heuristic
pruning is performed during decoding. We consider different modelling choices in the
construction of transducer rules. The evaluation of our models is based on precision
and recall. Experiments are performed to correct various error types on two learner
corpora. The results show that our system is competitive with existing approaches
on several error types.
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Uittreksel

Ons ondersoek die toepassing van geweegde boomoutomate om grammatikafoute in
natuurlike taal outomaties reg te stel. Geweegde eindigetoestand outomate word
suksesvol gebruik in ’n wye omvang van take in natuurlike taalverwerking, alhoewel
die uitdrukkingskrag van die taalkundige transformasies wat hulle uitvoer beperk
is. Daar is die afgelope tyd ’n toename in die gebruik van geweegde boomouto-
mate en verwante formalismes wat sintaktiese transformasies in natuurlike taal in ’n
probabilistiese raamwerk voorstel.

Die natuurlike taalverwerkingstoepassing wat ons ondersoek is die outomatiese
regstelling van taalfoute wat gemaak word deur Engelse taalleerders. Terwyl spel-
toetsing in Engels met ’n baie hoë akkuraatheid gedoen kan word, is die prestasie van
taalregstellingstelsels nog relatief swak vir meeste fouttipes. Kommersiële taalreg-
stellingstelsels maak oorwegend gebruik van reël-gebaseerde metodes. Die algemeen-
ste benadering in onlangse navorsing oor grammatikale foutkorreksie is om statistiese
klassifiseerders wat plaaslike besluite oor die voorkoms van spesifieke fouttipes maak
te gebruik. Die benadering wat ons ondersoek is verwant aan ’n aantal ander be-
naderings wat geïnspireer is deur statistiese masjienvertaling of op taalmodellering
gebaseer is. Korpora van taalleerderskryfwerk wat met foutregstellings geannoteer
is, word as afrigdata gebruik.

Ons kontrolestelsel is ’n geraaskanaal eindigetoestand outomaatmodel wat bestaan
uit ’n n-gram taalmodel en ’n foutmodel wat invoegings-, verwyderings- en ver-
vangingsoperasies op woordvlak uitvoer. Die boomoutomaatmodel wat ons gebruik
vir grammatikale foutkorreksie is ’n geweegde bo-na-onder boom-na-string omset-
teroutomaat geformuleer om transformasies tussen sintaksbome van korrekte sinne
en foutiewe sinne te maak. ’n Algoritme wat ontwikkel is vir sintaksgebaseerde
statistiese masjienvertaling word gebruik om reëls te onttrek uit die afrigdata, waar-
van sintaksontleding op die korrekte weergawe van die sinne gedoen is. Reëlgewigte
word ook vanaf die afrigdata beraam. Hipotese-sinne gegenereer deur die boom-
outomaat word herrangskik met behulp van ’n n-gram taalmodel.

Ons voer eksperimente uit om die doeltreffendheid van verskillende opstellings
van die voorgestelde modelle te evalueer. In ons implementering word ’n bestaande
boomoutomaat sagtewarepakket gebruik. Om die dekoderingstyd te verminder word
sinne in frases verdeel en die soekruimte heuristies besnoei. Ons oorweeg verskeie
modelleringskeuses in die samestelling van outomaatreëls. Die evaluering van ons
modelle word gebaseer op presisie en herroepvermoë. Eksperimente word uitgevoer
om verskeie fouttipes reg te maak op twee leerderkorpora. Die resultate wys dat ons
model kompeterend is met bestaande benaderings op verskeie fouttipes.
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Chapter 1

Introduction

A central limitation of many practical natural language processing (NLP) systems
today lies in their inability to fully model the syntax of natural language. A range of
NLP tasks can be performed surprisingly well by using models based only on local
word context. Yet, to handle more complex structures that occur in language, and
to move closer to the way that humans process language, we need to incorporate
models of syntax.

In this thesis we investigate the application of syntax-based tree transducer mod-
els to grammatical error correction. Grammatical error correction is an important,
yet under-explored problem in NLP. It is especially important to those learning and
using English as a second or foreign language. We use a class of models called
weighted tree transducers to model syntax-based text transformations in a proba-
bilistic setting. As the weights of these models are used to represent probability
distributions, we also refer to this class as probabilistic tree transducers. Construct-
ing and applying our models can also be seen as a machine learning problem.

1.1 Background

Automata theory (Sipser, 2006) is rooted in Turing’s models of computation devel-
oped in the 1930s. Shannon (1948) was the first to use a Markov chain (which is
a kind of weighted finite-state automaton) as a simple model for natural language.
The noted linguist Noam Chomsky proposed different classes of automata as formal
models for natural language (Chomsky, 1956). In particular, Chomsky argued that
finite-state models are inadequate to describe language, and argued that (at least)
context-free grammars are needed. Chomsky also introduced the use of trees to
describe the syntax of sentences. In his linguistic theory of transformational gram-
mar, a kernel of simple sentences is generated by a context-free grammar. All other
sentences are constructed by repeated transformations on the syntax trees of kernel
sentences. The idea of a tree transducer, a finite-state machine that performs these
transformations, was inspired by transformational grammar. The tree transducer
was formalised independently by Rounds (1970) and Thatcher (1970).

Chomsky was strongly opposed to empirical linguistics in general, and to proba-
bilistic models in particular. He argued that “There is no general relation between the
frequency of a string (or its component parts) and its grammaticalness.” (Chomsky,

1



CHAPTER 1. INTRODUCTION 2

1956). He used the now famous sentence Colourless green ideas sleep furiously as an
example of a sentence that is grammatically correct though without any meaning,
and therefore unlikely to occur as a written sentence. Chomsky’s influence led to a
shift away from data-driven methods in linguistics. In the field of Artificial Intelli-
gence, that developed out of Computer Science in the late 1950s, the focus was also
primarily on symbolic methods. Only in the field of electrical engineering work was
done in the stochastic paradigm, building on Shannon’s models (Jurafsky and Mar-
tin, 2009, chap. 1). These stochastic methods became successful in automatic speech
recognition, especially with the use of the hidden Markov model (HMM) (Rabiner
and Juang, 1986). The success of HMMs led to the use of probabilistic finite-state
models in many applications in natural language processing, including part-of-speech
tagging, syntactic parsing and machine translation. A good example of this devel-
opment is in machine translation. Early machine translation systems were based
on large hand-crafted grammars. However, their success was limited due to the
prevalence of ambiguity and irregularities in language. With the advent of statis-
tical machine translation (SMT) (Brown et al., 1993), it was shown that statistical
methods with simpler underlying models could perform as well as or better than
rule-based systems, without the cost of manual rule-construction.

In this past decade, the development of probabilistic data-driven methods ac-
celerated (Jurafsky and Martin, 2009, chap. 1). The first reason for this was that
large text corpora and annotated linguistic datasets became widely available. These
resources led to competitive, standardized evaluations of different approaches. Sec-
ondly, the spread of high-performance computing allowed the development of models
with computational and memory requirements simply not available earlier. Finally,
there was a greater interplay between the fields of machine learning and NLP.

Though these advances improved the performance of finite-state methods, there
are still limitations to their abilities. An example of their deficiencies can be seen in
the output of SMT systems: Often, it broadly conveys the meaning of the sentence
in the source language, but not as a well-formed sentence in the target language.
Therefore some researchers started to use more expressive models, such as those
used in rule-based systems, in a probabilistic setting. An example of this is syntax-
based SMT (Yamada and Knight, 2001; Graehl et al., 2008), where the translation
is based on a transformation involving the syntactic structure of the source or target
sentence. These probabilistic, syntax-based models were formalized with weighted
tree transducers. However, simply adding syntax does not automatically improve
the performance of a model. Several issues regarding parameterization and decoding
should be addressed to make syntax-based models successful.

The main theoretical models that we study in this thesis are weighted tree au-
tomata and weighted tree transducers. Tree automata theory (Gécseg and Steinby,
1984; Comon et al., 2007) was developed as a generalization of classical (string) au-
tomata theory. The main application areas are in compiler theory and in natural lan-
guage processing. Weighted algorithms developed for finite-state transducers (Mohri,
2009) have been extended to weighted tree transducers (May, 2010). In contrast to
the string case, where weighted finite-state transducers (FSTs) are a standardized
model, there are a multitude of different tree transducer formalisms, which differ
in their expressive power (Maletti et al., 2009). Furthermore, there are transducers
that perform tree-to-tree transformations as well as transducers for tree-to-string
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transformations. In the implementation of our tree transducer models we use the
tree automata toolkit Tiburon (May and Knight, 2006).

1.2 Problem description

English is arguably the most widely used language in the world. It has more than
400 million native speakers and a similar number of bilingual speakers (Huddleston
and Pullum, 2005, chap. 1). Many more people are learning English, or have some
degree of proficiency in it. English is the most widely used language on the internet,
and is the primary language used for international communication. We follow the
terminology of Leacock et al. (2010) by using the term language learner to refer
to people learning English both in predominantly English-speaking countries and in
places where the dominant language is not English.

There is a growing need for tools to assist people speaking English as a second or
foreign language in using the language correctly. Central to such tools are methods
to automatically detect and correct (or suggest possible corrections to) grammat-
ical errors. Spell checking is a well-studied problem: Today spelling mistakes can
be detected automatically with a very high accuracy, and good corrections can be
suggested in most cases. However, grammar correction is a more difficult problem,
and it is an under-explored task in NLP. Word processing systems can detect some
grammatical errors. However, they usually focus on first language speakers, while
there are significant differences between the grammatical errors that first language
speakers and language learners make (Leacock et al., 2010, chap. 3).

By grammatical error correction (GEC) we mean the automated correction of
grammatical errors that people make in writing. We constrain our study to that
of errors made in English, due to the availability of large quantities of linguistic
resources, and the significance of English as the language used most often as a second
or additional language. However, the methods that we study are also applicable
to other languages. Although a practical grammar correction system for language
learners should include a component for spelling correction, we do not study spelling
correction in this thesis. Our models can be applied to correct bad language on
the internet (Eisenstein, 2013). However, we are not concerned with the specific
characteristics of non-standard language usage on social media text.

Modern NLP has made it possible to build systems that are capable of detecting
and correcting a reasonable subset of errors made by language learners (Leacock
et al., 2010, chap. 1). However, performance is still low in comparison to widely-
studied NLP problems such as parsing, word sense disambiguation and information
extraction. The use of statistical methods to perform linguistic analysis is not yet
as widespread in practical GEC systems as for other NLP tasks such as machine
translation.

Recently, shared tasks for GEC has led to an increase in attention in the NLP
research community. The Helping Our Own (HOO) task was introduced by Dale and
Kilgarriff (2010) with the intention of correcting errors in computational linguistics
papers made by non-native English speakers. The 2011 task (Dale and Kilgarriff,
2011) used a dataset of text fragments extracted from computational linguistics
papers, annotated with error types and suggested corrections. The 2012 task (Dale
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et al., 2012) focussed on preposition and determiner correction in learner text, using a
larger annotated dataset extracted from the Cambridge learner corpus. In 2013, GEC
was the shared task for the high-profile Computational Natural Language Learning
(CoNLL) conference (Ng et al., 2013), focussing on a set of five common language
learner errors. We entered a system based on the models in this thesis for the shared
task, obtaining promising results (Buys and van der Merwe, 2013).

1.3 Approach

Grammatical error correction can be viewed as either a text classification or a text
transformation problem. In the classification approach, words or phrases in the text
are classified as either grammatical or ungrammatical. At incorrect positions, a
correction is chosen from a finite set of alternatives and applied to the original text.

In the transformational approach, which we follow in this thesis, possibly incor-
rect sentences are transformed to corresponding correct sentences. Though most of
the words are left unchanged, incorrect phrases are transformed to correct phrases.
A criterion of these transformations is that they should perform the minimal num-
ber of edits to obtain a correct sentence. In this thesis we develop models based on
weighted tree-to-string transducers to perform these transformations.

The most important modelling choice in constructing GEC models concerns the
context taken into consideration when making classification decisions or performing
phrasal transformations. Many grammar errors can be seen as the result of the
incorrect use of the syntax of a language. Therefore we construct models that perform
transformations based on syntactic context.

A tree-to-tree or tree-to-string transducer can be used to perform grammar cor-
rection. A problem with the tree-to-tree model is that to decode an incorrect sentence
it should be parsed first. Parsing ungrammatical sentences is less accurate than pars-
ing grammatical sentences, as the incorrect words in the sentence may lead the parser
to make incorrect parsing decisions about other parts of the sentence. Therefore we
rather use tree-to-string transducers. These transducers are formulated to transform
the parse trees of correct sentences into corresponding incorrect sentences. During
decoding a given (incorrect) sentence is transformed to a correct sentence, and parsed
simultaneously.

As a baseline, we implement a FST model based on a n-gram language model
and a word transformation model that does not consider any additional context.
The main challenges in our tree transducer models lie in parameterization and de-
coding. Finding minimum edit distances is much more computationally expensive
when working with trees than with strings. Therefore the rule set of the transducer
should be constructed carefully. As the model takes more context into consideration,
there are more parameters to be estimated from a limited amount of training data.
The search space of the model is very large, so pruning should be performed to make
decoding feasible, but without undermining the advantages of taking more context
into consideration.
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1.4 Objectives

The objectives of this study are

- to study the application of weighted tree transducers to natural language pro-
cessing;

- to study weighted tree transducers as a class of probabilistic models;

- to investigate syntax-based models for grammatical error correction; and

- to develop a novel practical NLP system, based on probabilistic tree transduc-
ers, for grammatical error correction.

1.5 Thesis outline

In this section we provide a brief outline of the structure of this thesis. In Chapter
2 we discuss English grammar and grammar errors, and review existing models of
grammatical error correction. The theoretical models (automata, grammars and
transducers) used in this thesis are defined in Chapter 3, with examples of how
they are applied to model natural language. We present representation, inference
and training algorithms for probabilistic models in Chapter 4. Language models,
syntactic parsing, and probabilistic models for the automata theoretic models are
discussed.

The experimental setup of the models that we develop is set out in Chapter 5.
A baseline FST model is also given. We present the tree transducer models that
we propose for grammatical error correction in Chapter 6. Results of our model
are given and analysed in Chapter 7. We conclude this work by summarizing our
contributions and suggesting future work, in Chapter 8.



Chapter 2

Grammatical Error Correction

In this chapter we present background to the problem of grammatical error correc-
tion. We review English grammar and different types of grammar errors. Training
and testing data used to develop GEC systems, as well as GEC evaluation met-
rics are discussed. Then we review the main categories of GEC models: Statistical
classifiers, rule-based models, language modelling approaches and SMT-inspired ap-
proaches. Leacock et al. (2010) give a recent, comprehensive review of grammatical
error correction. In the presentation of this chapter we often follow their terminology
and analysis.

2.1 English grammar

In this section we review some relevant concepts in English grammar. Firstly, the
goals of grammar and varieties in language are discussed. Then we present the main
components of syntactic structure.

2.1.1 Goals of grammar

A grammar of a language describes the principles and rules governing the form and
meaning of words, phrases, clauses, and sentences (Huddleston and Pullum, 2002).
Usage refers to the choice of words in a given context. Though multiple word choices
may be grammatically correct and have the same meaning, there is often a preference
among native speakers for some word choice above others. Though usage is not
strictly seen as part of the grammar of a language, it plays an important role in NLP
models. In the field of grammatical error correction, usage errors are usually included
in the kind of errors to be corrected (Leacock et al., 2010, chap. 1). In most cases
there is little difference among native speakers of a language regarding judgements
of pure grammaticality. However, there may be greater variation in judgements of
usage preferences.

There are many varieties of English. We mention some distinctions. What is
known as standard English is the international norm, with a few points of differ-
ence between American and British English. There are also non-standard forms of
usage (Huddleston and Pullum, 2005, chap. 1). Furthermore a distinction is made
between formal and informal styles, which are used in different contexts. The type of

6
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language used on social media can also be seen as a rapidly developing non-standard
form of English. Social media text has non-standard punctuation, capitalization,
spelling, vocabulary, and syntax (Eisenstein, 2013).

Example 2.1.1 In the sentences below, (1a) is an example of non-standard usage,
while (1b) is the corresponding standard form. Sentence (2a) is an example of
informal style. The formal equivalent in (2b) needs to be used only in very formal
contexts.

1. a) I ain’t told nobody nothing.

b) I haven’t told anybody anything.

2. a) He was the one she worked with.

b) He was the one with whom she worked.

A grammar can have either descriptive or prescriptive goals. Descriptive gram-
mar describes a language as it is used by people who speak and write the language,
while prescriptive grammar prescribes how the language should be used. Prescrip-
tive grammars often do not distinguish between informal style and ungrammatical
usage. For example, prescriptive grammar may judge the sentence It is me to be
ungrammatical, even though it is widely used by native speakers.

A variation in language that does not meet some prescriptive standard should not
per se be seen as ungrammatical. The goal of grammatical error correction should
not be to enforce strict prescriptive constraints on how a language should be used;
it should rather be to correct mistakes where written constructions do not conform
to standard usage of the language.

Grammar can be divided into two components: Morphology and syntax. Mor-
phology is concerned with the internal structure of words, while syntax is concerned
with the way that words combine to form sentences. Grammar also interacts with
other levels of description of language (Huddleston and Pullum, 2005, chap. 1). Se-
mantics deals with the principles of how sentences are associated with their (literal)
meanings. Pragmatics refers to the use and interpretation of sentences as they are
used in particular contexts.

Although the focus of our models is on syntax, we briefly mention one relevant
concept from morphology. Different words are associated with the same lexeme if
they are different forms of essentially the same word. For example, cat and cats
are singular and plural forms of the same noun lexeme, while kick, kicks and kicked
are different forms of the same verb lexeme. Different forms of the same lexeme are
called inflections. An inflection is usually indicated by a suffix appended to the base
form of the lexeme.

2.1.2 Syntactic structure

We give a brief overview of the most important elements of English syntax, mostly
following the terminology of Huddleston and Pullum (2005).

Two basic kinds of grammatical elements are functions and categories. A function
is a relational concept, indicating a relation between a word or phrase and another
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Figure 2.1: A constituency parse tree.

word or phrase. A category is a class of words or phrases that are grammatically
alike. A function may be realized by multiple categories, while a category may
perform different functions in different contexts.

Fundamental to phrase structure (or constituency) grammar is the idea that a
phrase labeled with a category, called a constituency phrase, can behave as a single
unit. The most important word in a constituency phrase, that usually determines the
phrase category, is called the head of the phrase. The other words in the phrase are
called dependents. Constituency structure is hierarchical: Two constituency phrases
are either disjoint, or one phrase is a subphrase of the other. Consequently, con-
stituency structure can be represented as a tree, called a parse tree. Chomsky
(1957) first proposed phrase structure grammars to formalize English grammar. A
parse tree for the sentence The man helps the children is shown in Figure 2.1.

The term part-of-speech (POS) refers to a category of words. A standard list
of parts-of-speech is noun, verb, adjective, adverb, determiner, preposition and con-
junction. However, lists of POS categories (also called tagsets) differ in level of
granularity. The Penn Treebank POS tagset (Santorini, 1990), which we use in our
models, has 36 tags. This tagset is given in Appendix A.

Parts-of-speech can be classified into closed and open class categories. Closed
classes have a relatively fixed membership, while new words are continuously being
added to open classes. The open POS classes are nouns, verbs, adjectives and ad-
verbs. Many words have multiple possible POS tags. For example, the words map
and drink can be nouns or verbs, depending on the context they are used in. POS
tagging is the problem of assigning a POS tag to each word in a sentence. State-of-
the-art taggers such as the Stanford POS tagger (Toutanova et al., 2003) can achieve
accuracies of around 97%. A syntactic phrase is usually labeled with the POS of
its head word. The main phrase categories are noun, verb, adjective, adverb and
prepositional phrases.

A basic category in the syntax of sentences is the clause, which usually consists
of a phrase with a subject function, followed by a phrase with a predicate function. A
sentence that has the form of a clause is a clausal sentence. Sentences often consist of
two or more clauses. Later in this thesis, we present an algorithm to split sentences
heuristically into clauses.

The basic clause types are declarative, interrogative and imperative clauses.
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Figure 2.2: An example of prepositional phrase attachment ambiguity.

Characteristically, declarative clauses make statements, interrogatives ask questions,
and imperatives issue directives, including requests, commands and instructions.

Example 2.1.2 Sentences below illustrate these concepts. In the clausal sentence
(1), the subject is the noun things and the predicate is the verb change. Sentence
(2) is also a clausal sentence, with a noun phrase subject the man and a verb phrase
object kicks the ball. In this sentence, the noun phrase the ball is an object. Sentence
(3) is a compound sentence with two clauses. The clauses in the first three sentences
are declarative. Sentence (4) is an interrogative clause, while (5) is an imperative.

1. Things change.

2. The man kicks the ball.

3. He kicks the ball, and she catches it.

4. Did he kick the ball?

5. Kick the ball!

Just as words can have multiple POS tags, sentences can have multiple parses.
Two examples of syntactic ambiguity, as this is referred to, are attachment ambiguity
and coordination ambiguity (Jurafsky and Martin, 2009, chap. 13). In coordination
ambiguity, the problem is to find the boundaries of phrases which are joined by a
coordinating conjunction. For example, the phrase nationwide television and radio
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can be parsed into nested noun phrases as either [nationwide [television and radio]]
or [[nationwide television] and radio].

The classic example of prepositional phrase attachment ambiguity is given in
Figure 2.2. Two parses of the sentence He saw the man with a telescope are given. In
(a), the prepositional phrase modifies the noun phrase the man, while in (b) the verb
saw is modified. The two parses denote different possible meanings of the sentence.
In (a) a man that has a telescope is seen by John, while in (b), John is looking
through a telescope when he sees the man.

A treebank is a syntactically annotated corpus. Every sentence is syntactically
annotated with a parse tree. The Penn Treebank (PTB) project (Marcus et al.,
1993) produces English treebanks. The PTB syntactic annotations are described
extensively in Bies et al. (1995). The PTB syntactic tagset, used for syntax trees in
this thesis, is given in Appendix A.

An alternative class of grammar formalisms is called dependency grammars. De-
pendency grammars describe the structure of sentences in terms of binary syntactic
or semantic relations between words (Jurafsky and Martin, 2009, chap. 12). A depen-
dency parse is represented as a directed acyclic graph with the words in the sentence
as nodes. In a typed dependency parse, edges representing word relations are labeled.
Typically, labels express functional relations between words, though category labels
may also be included. A widely used dependency grammar formalism is the Stanford
typed dependencies representation (De Marneffe et al., 2006).

2.2 Grammar errors

The focus of research in grammatical error correction is on the errors that language
learners make. Language learners with different levels of proficiency in English differ
in the kind and number of errors they make. However, learners that already have a
high level of language proficiency still tend to make errors that first language speakers
rarely make. We should also note that there are significant differences between the
distributions of grammar mistakes made by first and by second language speakers.
Interestingly, many of the most common errors made by first language speakers occur
in complex constructions that are usually avoided by language learners (Leacock
et al., 2010, chap. 3).

In this section we introduce language learner corpora and discuss some common
grammatical errors that we deal with in this thesis.

2.2.1 Language learner corpora

The main source of data regarding language learner errors is language learner cor-
pora. These corpora usually consist of essays written by language learners for some
language course or examination. Most language learner corpora are not freely avail-
able, and only some are error-annotated. This has until recently been an obstacle to
research in grammatical error correction. A comprehensive list of language learner
corpora can be found in Leacock et al. (2010, chap. 4). We discuss the two corpora
used in developing grammar correction models in this thesis.
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Error type Percentage
Replace word errors 36.92
Missing word errors 19.72
Unnecessary word errors 11.11
Tense errors 8.05
Word form errors 6.88
Agreement errors 5.31
Derivation errors 4.68
Inflection errors 1.59
Count errors 0.65
Other errors 5.09

Table 2.1: Errors in the FCE Corpus by error type.

2.2.1.1 CLC FCE

The Cambridge Learner Corpus (CLC) (Nicholls, 2003) is the world’s largest corpus
of English learner writing. The corpus consists of a large collection of English Lan-
guage competency examination scripts: It has at least 16 million words, of which a
large portion has been error-annotated. The CLC is not publicly available. However,
an extract of the corpus taken from the First Certificate in English (FCE) exam has
been made publicly available (Yannakoudakis et al., 2011). The dataset consists of
1141 annotated essays, totalling about 500 000 words. An additional 97 essays are
designated as test data. The annotations include error types (using the CLC er-
ror annotation scheme), suggested corrections, as well as meta-data on the age and
first language of the writer of each essay. Since learners taking the FCE test have
a relatively low proficiency in English, the essays contain a large number of errors.
The FCE dataset was used as training data for the HOO 2012 shared task, though
a different test set, not publicly available, was used.

The CLC error classification has two dimensions: The nature of the error (word
insertion, deletion, form, etc.) and the word category of the error (verb, noun, prepo-
sition, etc.). A breakdown of the relative error frequencies of these two classifications
in the FCE dataset are given in Tables 2.1 and 2.2. Note that spelling errors, which
are also annotated in the corpus, are excluded from this analysis.

2.2.1.2 NUCLE

The National University of Singapore Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) is another large, fully error-annotated corpus. It consists of 1414 es-
says written by students from the National University of Singapore, totalling more
that 1.2 million words. It is available free of charge, but with a licence agreement.
The second version of this dataset was released as training data for the CoNLL-2013
shared task in grammatical error correction. A blind test set consisting of 50 essays
was used for the shared task and released after the evaluation.

The grammar errors in NUCLE are very sparse, as the students who wrote the
essays already had a relatively high proficiency in English. In the corpus, 57.6% of
sentences have no errors, while only 11.2% of sentences have more that two errors.
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Error category Percentage
Verb errors 23.03
Punctuation errors 15.63
Preposition errors 12.12
Determiner errors 11.36
Noun errors 10.24
Pronoun errors 5.45
Adjective errors 5.45
Adverb errors 3.96
Word order errors 3.25
Conjunction errors 1.56
Quantifier errors 1.13
Other errors 12.27

Table 2.2: Errors in the FCE Corpus by word category.

The first language of most of the learners whose essays are included in NUCLE is
Chinese.

A breakdown of error types in the NUCLE corpus, that has its own error annota-
tion scheme, is given in Table 2.3. The error classification is a mix of word category
classes and more specific error types. A breakdown of the relative frequency of each
of the error types considered in the CoNLL-2013 shared task is given in Table 2.4.
From the table it is clear that the relative frequency of errors is much higher on the
test data than on the training data.

2.2.1.3 Annotator agreement

A challenge in the annotation of learner corpora is that there may be significant
differences among human annotators over the grammaticality of constructions, and
what the best correction for an incorrect word of a phrase is. Annotators may
also miss some of the incorrect constructions. Usage errors is a particular source of
disagreement among annotators. An annotator agreement study on a subset of the
NUCLE corpus shows significant disagreement among annotators (Dahlmeier et al.,
2013). Annotator agreement is measured by Cohen’s kappa coefficient, defined as

κ =
P (a)− P (e)

1− P (e)
, (2.2.1)

where P (a) is the probability of agreement between two annotators and P (e) is the
probability of chance agreement. Kappa scores between 0.2 and 0.4 are considered
fair, and scores between 0.4 and 0.6 moderate.

On the subset of NUCLE annotated by multiple annotators, the kappa for agree-
ment of annotated tokens (disregarding the error type and correction) is 0.388, while
the kappa of the error class and correction, given the identification, is 0.484.

As a consequence, when evaluating error correction systems against annotated
test data, one must bear in mind that annotator disagreement places an upper bound
on expected system performance.
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Error type Percentage
Article or Determiner 14.75
Wrong collocation or idiom 11.82
Local redundancy 10.50
Noun number 8.37
Verb tense 7.14
Punctuation and spelling 7.01
Preposition 5.37
Word form 4.82
Subject-verb agreement 3.38
Other errors 3.29
Verb form 3.22
Link word or phrases 3.06
Unclear meaning 2.65
Pronoun reference 2.06
Runons, comma splice 1.95
Incorrect sentence form 1.48
Citation 1.47
Tone 1.32
Parallelism 1.15
Verb modal 0.96
Missing verb 0.91
Subordinate clause 0.81
Adverb or adjective position 0.75
Fragment 0.56
Noun possessive 0.54
Pronoun form 0.41
Dangling modifier 0.12
Acronyms 0.11

Table 2.3: Errors in the NUCLE Corpus by error type.

Error type Training set Test set
Determiner 5.73 23.62
Preposition 2.07 10.68
Noun number 3.25 13.56
Verb form or SVA 2.56 8.42

Table 2.4: Number of errors per 1000 words in NUCLE, for different error types.

2.2.2 Common language learner errors

Many grammar errors are made as a result of differences between the first language
of a speaker, and the second language which they are using. These errors are referred
to as transfer problems (Leacock et al., 2010, chap. 3). Transfer problems are most
apparent where a feature in the second language (in our case English) is not present
in the learner’s first language. Subtle differences between languages with similar but



CHAPTER 2. GRAMMATICAL ERROR CORRECTION 14

not identical grammatical constructions can also cause problems. We now discuss
some of the common errors made by language learners.

Most determiner errors are article errors. The correction of article errors requires
word insertion or deletion more than most other error types. The main reason for the
high occurrence of determiner errors is that many languages (for example, Chinese
and Russian) do not have articles. It has been shown that there is a considerable
difference in the frequency of article errors made by English learners whose first
language does not have articles, and those that do (Leacock et al., 2010, chap. 3).
There are also some differences in the use of articles between languages that do have
articles, which may lead to transfer errors. For example, for some constructions
an article is included in English, but not in the German equivalent. The choice of
whether an article should be included or excluded before a noun phrase is depen-
dent on the noun, its grammatical context and its semantics. The countability of a
noun determines whether it may take the indefinite article (a/an). Some nouns are
countable in some usage contexts but not in others. Pragmatics may also play a role
in the choice of article.

Another common type of closed class word category error is preposition errors.
A many-to-many correspondence between prepositions in different languages leads
to transfer errors. Prepositions are often used as syntactic rather than semantic
constructions. The choice of preposition may be governed by the verb of the clause in
which it occurs, or by the noun phrase following the preposition. Many phrasal verbs
consist of a verb and a preposition (e.g. give in, hold on, catch up). Prepositional
phrase attachment ambiguity further increases the difficulty for language learners to
choose the correct preposition in a given context.

The open class word category with the highest error frequency is that of verbs.
Verb errors include incorrect inflections (e.g. eated/ate) and wrong tense errors
(e.g. eat/ate/ has eaten). Another important type of verb error involves subject-verb
agreement (SVA). In English, the verb that follows a third person singular subject
has a distinct form, usually adding -s or -es as suffix (e.g. I eat/he eats). Many
languages (e.g. French and German) have much more complicated agreement rules
than English, while others (such as Afrikaans) have almost no special verb forms.
Most agreement errors made by language learners occur when the head noun of the
subject noun phrase does not directly precede the verb. This makes it particularly
challenging to detect these errors.

Noun errors usually occur when an incorrect or invalid form of a noun is used.
The most common noun mistake is noun number errors, i.e. incorrect singular or
plural noun forms. Some languages, including Chinese, do not have distinct plural
forms for most nouns, again leading to transfer errors.

Collocation errors involve the incorrect usage of conventional combinations of
words. Mastering these preferences for some word combinations over others is a
significant challenge for language learners. Tests show that learners obtain very low
scores in exercises testing the correct usage of word combinations (Leacock et al.,
2010, chap. 3). It has been found that around 40% of verb-object constructions
are collocations (e.g. throw a party, hold an election). Other constructions that are
frequently used as collocations include adjective-noun, noun-noun and verb-adverb
POS combinations. There is some overlap between collocation errors and some other
errors classified by word category.
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A class of errors that we will not consider in this thesis, but which also occurs
quite frequently, is punctuation errors. The most common punctuation errors involve
the incorrect usage of commas.

2.3 Training and test data

Most approaches in the literature that are relevant for this thesis consider grammat-
ical error correction as a machine learning problem. Therefore, training and test
data are required to construct and evaluate systems. The three main sources of
training and test data are well-formed text corpora, learner corpora and artificial
error corpora.

2.3.1 Well-formed text corpora

The first resource, used by almost all error correction systems in some way, is large
text corpora consisting of correct sentences. Examples of corpora frequently used
include the Gigaword corpora, the British National Corpus and the Wall Street
Journal (WSJ) corpus.

To understand how well-formed text is used, a distinction should be made be-
tween the problems of selection and correction of a word at a sentence position. The
selection problem is to predict a word (for example, an article or preposition) at
some position in a sentence that has been left blank. The word should usually be
chosen from a confusion set of words. The correction problem is to find the correct
word given a possibly incorrect word at a sentence position. In both cases the given
or predicted word may be the empty string.

Well-formed text is used to train and test models for the selection task. It is
also used to train language models, which are often a component in a GEC system.
Well-formed text cannot be used to train correction models, as it does not contain
pairs of incorrect and correct usage instances. However, a selection model can still
be used to perform grammar correction, though the original word will not be used
as a feature.

2.3.2 Learner corpora

The most appropriate training and testing data for grammatical error correction
systems are annotated learner corpora. Learner corpora were discussed in Section
2.2.1. The main limitation in using learner corpora to train GEC systems is data
sparseness. Only a few large annotated corpora are available. Even in these corpora,
the occurrence of errors is sparse: Many errors in a corpus appear only a few times,
and definitely not in all contexts in which they possibly may occur. For many open
class words, none of the errors that may be associated with it may appear in a corpus.

2.3.3 Artificial error corpora

In the absence of sufficiently large corpora, an alternative is to use an artificially
created error corpus. Such a corpus is created by inserting errors of certain types
into a corpus of well-formed text with some stochastic process. A parallel corpus of
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correct and incorrect sentences, that can be used to train error correction systems,
is obtained in this way. Training a machine learning system from artificial training
data is not an ideal solution, as the system is not learning a true distribution of the
occurrence of errors in the text. Still, it has been shown that such approaches can
be helpful in building automatic error correction systems.

Foster and Andersen (2009) propose a system for automatically generating erro-
neous sentences from well-formed text. The type of errors to be generated and the
desired proportion of errors of each type can be set as parameters. These parameters
can be set manually, or estimated from the errors in a language learner corpus. In
the latter case, the system can generate a large artificial corpus that mimics the
characteristics of a small learner corpus, while containing a wider range of error
examples.

2.4 Evaluation

The standard automatic evaluation metrics used for grammatical error correction are
precision, recall and F1 scores. The selection task is usually evaluated by accuracy,
the proportion of correct predictions made at the considered positions.

To perform evaluation an annotated set of test sentences is used. The annotated
corrections of the test set is referred to as the gold standard. The test sentence correc-
tions proposed by a GEC system is evaluated against the gold standard corrections.
Changes made to incorrect sentences are represented by edit sequences.

Let s be the number of edits made by the system, g be the number of gold
standard edits, and c be the number of correct edits, i.e. system edits that are also
gold standard edits. Suppose that there are n test sentences. The sufficient statistics
evaluating system performance on the ith sentence is the 3-tuple (si, gi, ci), such that
s =

∑n
i=1 si, g =

∑n
i=1 gi and c =

∑n
i=1 ci. The precision p, recall r, and F1 score f

are defined as follows:

p =
c

s
(2.4.1)

r =
c

g
(2.4.2)

f =
2pr

p+ r
(2.4.3)

Precision is the proportion of system edits which match gold standard edits, while
recall is the proportion of gold standard edits which were made by the system. The
F1 score is the harmonic mean of the precision and recall scores. Scores are usually
expressed as percentages.

In the HOO 2011 and 2012 shared tasks (Dale and Kilgarriff, 2011; Dale et al.,
2012), precision, recall and F1 scores were computed for the detection, recognition
and correction of errors. Detection measures how well the system determines that
some edits must occur in the text, while recognition measures how well the system
determines the exact positions of where edits must occur. In this thesis we are more
interested in how well a system performs corrections than in how well it detect errors.
Therefore we focus on evaluating error correction.
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Dahlmeier and Ng (2012b) suggest an approach to compute the sufficient statis-
tics for GEC evaluation from system output sentences. In general, there may be
multiple edit sequences that result in the same system output sentence when applied
to the original sentence. As the gold standard is usually represented as an edit se-
quence, the system edit sequence that matches the gold standard edit sequence as
closely as possible will lead to the most accurate evaluation result. Dahlmeier and
Ng (2012b) represent possible system edit sequences in a lattice, using Levenstein
edit distances as weights. Weights of edges corresponding to gold standard edit op-
erations are then modified to have a negative weight. It is proven that the shortest
path through the lattice corresponds to the optimal edit sequence. That edit se-
quence is used to compute the evaluation scores. The M2 scorer, an open-source
implementation of this approach, is used as the official scorer for the CoNLL-2013
shared task.

2.5 Existing GEC models

Next we review the principal approaches to grammatical error correction in the
literature.

2.5.1 Classification-based approaches

There is a growing body of literature on the use of statistical classifiers to correct
specific types of grammar errors. Most of the research on these approaches focus on
article and preposition errors. Most system entries in the 2011 and 2012 HOO shared
tasks fall under this approach. There are two model categories: Models trained on
well-formed text, and models trained on learner text. We review models in both
these categories.

State-of-the-art article selection systems achieve accuracies of around 90% when
evaluated on well-formed text. For preposition selection, accuracies of around 75%
can be obtained. The performance of correction systems is much worse when evalu-
ated on learner data. The best systems achieve a recall of about 40% for determiner
correction and 20% for preposition correction, with a maximum precision of around
60%. An important insight in GEC research was that it is beneficial to include the
original word as a feature in classifiers for the correction task.

2.5.1.1 Models trained from well-formed text

The seminal work on the classification approach to grammatical error correction was
done by Knight and Chander (1994). They focussed on article correction of the
output of Japanese-to-English machine translation. A decision tree was trained for
each of the 1600 most frequently occurring head nouns in training data of well-formed
text. The classifier was then applied to all head nouns in the target language output
of the translation system. An accuracy of 81% was obtained on the noun phrases
considered.

De Felice and Pulman (2008) use maximum entropy classifiers to correct deter-
miners and prepositions. The confusion set for preposition correction is the 9 most
frequent prepositions in the data. The feature set used include the POS tags of the
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word context and semantic information such as WordNet categories. Accuracies of
92% and 70% were obtained on determiner and preposition selection, respectively.

The Microsoft Research ESL Assistant (Gamon et al., 2008) was available as
a web-based service for English second language speakers from 2008 to 2011. The
system uses decision tree classifiers for preposition and article errors. The presence
classifier predicts whether an article or preposition should be present at a given
position or not. If there should be an article or preposition, the choice classifier
predicts the choice of article or preposition from a confusion set. The classifiers are
trained with well-formed text from different domains. A large language model trained
on the Gigaword Corpus is used to filter corrections suggested by the classifiers: If
the proposed word is different from the original word, the change is only accepted if
the LM score of the proposed sentence is higher than the LM score of the original
sentence.

A systematic evaluation of linear classifiers trained for the selection task and
applied to correction learner writing is carried out in Rozovskaya and Roth (2011).
Using a consistent feature set, the averaged perceptron gave the best performance,
followed by a naive Bayes classifier, a Language model and a count-based method.
The averaged perceptron is a mistake-driven online learning algorithm that gives
similar performance to logistic regression and support vector machines (SVMs), but
is trained more efficiently. However, as is frequently the case in machine learning,
the choice of features and the amount of training data has a greater influence on the
results than the choice of classifier.

2.5.1.2 Models trained from learner text

Han et al. (2010) were the first to train a system using a large-scale corpus of learner
text, using the Chungdahm corpus. They focus on preposition errors, and use a
maximum-entropy model with features similar to that of systems trained from well-
formed text, except that the original (possible incorrect) word choice is also taken
into consideration. The model performs markedly better when trained on learner
text than when trained on well-formed text, even when the size of the well-formed
text is five times that of the learner text. When this method is evaluated on learner
text, a precision of 82% and a recall of 13% is obtained.

Gamon (2010) extends the Microsoft Research ESL assistant to use a learner
corpus as additional training data. Scores from classifiers and a language model
are combined using a decision tree meta-classifier that is trained using the error-
annotated Cambridge Learner Corpus.

Rozovskaya and Roth (2011) propose a technique to adapt a naive Bayes model
to learner text by training the prior probability of the classifier from error-annotated
learner text. This allows for easy adaptation of the model to the error distributions
of learners with different native languages.

An approach to combine classifiers for selection and correction is presented by
Dahlmeier and Ng (2011b). The authors use Alternation Structure Optimization,
a machine learning algorithm that uses auxiliary problems to improve classification
performance on a target problem by exploiting the common structure of these prob-
lems. In the case of grammar correction on learner text, the selection task is an
informative auxiliary problem. Compared to baselines trained either only for the se-
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lection task, or only on leaner text, improved F1 scores are obtained for both article
and preposition correction. Using the NUCLE corpus, F1 scores of 19.29% on article
correction and 11.15% on preposition correction are achieved.

Dahlmeier and Ng (2012a) present a beam-search decoder for combining classi-
fiers for specific error categories. The method enables the correction of sentences with
multiple, interacting errors. The decoder performs an iterative search over sentence
hypotheses. Proposers generate new hypotheses by making incremental changes to
current hypotheses. Experts then score the grammatical correctness of new hypothe-
ses. The beam width determines how many hypothesis are kept after each iteration.
Error categories handled include spelling, articles, prepositions, punctuation and
noun number errors.

The highest scoring submission in the HOO 2012 shared task is that of the Na-
tional University of Singapore (Dahlmeier et al., 2012). Their system uses a pipeline
of linear classifiers; classifiers for determiner correction, replacement preposition cor-
rection, and missing and unwanted preposition correction are applied in turn. Each
step involves feature extraction, classification and language model filtering. The clas-
sifiers are trained using confidence-weighted learning, a machine learning algorithm
suitable for high dimensional, sparse feature spaces. The determiner correction clas-
sifier is trained to predict the correct article from the confusion set {a/an, the, ε}.
The types of features used in the classifier include lexical, POS, head word, web
n-gram count, dependency, preposition and verb object features. The replacement
preposition correction classifier uses a set of 36 frequent prepositions as confusion
set. Features similar (but not exactly equal) to that for determiner correction are
used. For missing and unwanted preposition correction a separate binary classifier is
trained for each of a set of 7 prepositions. In all classifiers, the observed word is also
used as a feature. All corrections are filters with a language model: A correction is
only accepted if it strictly increases the language model score of the sentence (nor-
malized by the sentence length). The system obtained 63.9% precision and 31.9%
recall on determiner correction, and 60.22% precision and 22.95% recall on preposi-
tion detection.

2.5.2 Rule-based and hybrid approaches

The earliest grammar checking tools, such as the Unix Writer’s Workbench (Mac-
Donald et al., 1982), were based on string matching. Later, systems started using
full linguistic analyses with hand-crafted grammars (Leacock et al., 2010, chap. 2). A
difference between traditional grammars and those needed for error detection is that
the latter should be error-tolerant and capable of indicating that a parse contains
a violation of standard grammatical constraints. Linguistically expressive gram-
mar formalisms such as Head Driven Phrase Structure Grammar, Lexical Functional
Grammar and Constraint Grammar are capable of doing this better than context-
free grammars. Strategies to make grammars error-tolerant include over-generating
parse trees and ranking them in order of number of constraints violated, introducing
mal-rules to allow the generation of erroneous sentences, and fitting together partial
parses.

The most widely-used grammar checker for native English speakers is arguably
the one in Microsoft Word. The grammars in the Microsoft NLP system are based
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on Augmented Phrase Structure Grammars (APSGs) (Leacock et al., 2010, chap. 2).
Productions in APSGs can be annotated with linguistic restrictions on the left hand
side and features and attributes on the right-hand side. In order to perform grammar
correction, the APSG parse of a sentence is converted to a dependency graph that
represents syntactic and semantic information. Further analysis converts the depen-
dency graph to a high-level semantic graph that represents the meaning relations in
the sentence. Resources used in this model include the MindNet ontology and large
dictionaries with morphological information.

Leacock et al. (2010, chap. 8) argue that for some error types, manually con-
structed rules may be easier to develop than statistical ones. This is especially the
case when only very local contextual information is needed to detect errors. One
example of this is over-regularized verb inflection (e.g. writed instead of wrote). A
list of irregular English verbs and their over-regularized forms can be constructed
and applied to correct these verb inflection errors without any additional informa-
tion. Some subject-verb agreement errors or noun number errors may also be handled
with rule-based methods, though in many cases language learner errors of these types
involve more complex word interactions.

Many practical GEC systems use heuristic rules for certain error types and sta-
tistical classifiers for others. For example, the Microsoft Research ESL Assistant has
heuristic-based modules for errors related to verbs, nouns and adjectives. Examples
of constructions handled heuristically include modal verbs, phrasal verbs, adjective
word ordering, adjective/noun confusion and noun number errors (Leacock et al.,
2010, chap. 8). Heuristic rules are created manually by inspecting learner data. The
focus is especially on constructing rules that achieve high precision.

2.5.3 Language modelling approaches

Another approach to GEC is to perform edits with the goal of maximizing the fluency
of a phrase or sentence as judged by a language model.

An early statistical approach to grammatical error correction was proposed by
Atwell (1987). A trigram model is constructed over POS sequences. In the test data
trigrams with a low POS model score, or that occur frequently in error examples,
are flagged as errors. If an alternative POS tag at a position leads to a higher model
score, the word at that position is also flagged.

More recently, the availability of large text corpora has lead to better language
modelling approaches for GEC. The Google n-gram corpus is a large-scale corpus of
n-grams of length 1 to 5. Bergsma et al. (2009) use this corpus to perform preposition
selection, achieving 71% accuracy on well-formed text. Another approach is to use
counts from search engines: A phrase with many hits is more likely to be grammatical
than a phrase with a low number of hits. However, such an approach can be unreliable
as there is no guarantee that the number of hits will correspond to the true frequency
of the phrase in all the text being searched through.

Lee and Seneff (2006) describe a system for correcting language learner errors
that uses an n-gram language model and a PCFG to score possible corrections.
Firstly a given incorrect sentence is reduced by removing all articles, prepositions
and auxiliaries, changing nouns to their singular forms and verbs to their root forms.
A word lattice of possible corrections is then generated so that articles, prepositions
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and auxiliaries may be inserted between any two words, and that nouns and verbs
may be changed to any valid lexical form. The lattice is scored with an n-gram
language model, and the k-best candidate sentences are extracted. These candidate
sentences are then parsed with a PCFG. The parser scores are used to rerank the
candidates to find the best candidate correction. Better results were obtained using
the PCFG scores than when using only the n-gram model scores. A weakness of this
approach is that although multiple correct sentences may have the same reduced
representation, the system will always recover the same correct sentence from a
single reduced representation.

Turner and Charniak (2007) propose a model for article selection based on the
Charniak language model that uses the scores of a lexicalized parser to assign sen-
tence probabilities. The WSJ PTB and 20 million additional words from the North
American News Text Corpus are used to train the model. Article selection is done
for each noun phrase from the confusion set of articles by choosing the article and
noun phrase combination with the highest model probability. An accuracy of 86.63%
is obtained in this case.

A task related to grammar correction is that of classifying sentences as gram-
matical or ungrammatical. A simple approach is to use the score that a statistical
parser assigns to a sentence to judge its grammaticality. However, treebank-induced
grammars are not well suited to do this. The main reason is that they assign parses
to incorrect sentences without penalizing the parser score sufficiently. As a result
they cannot discriminate well between ungrammatical sentences and grammatical
sentences that occur with a low probability. Wagner et al. (2007) propose an ap-
proach that uses both a broad-coverage precision grammar (a hand-crafted lexical
functional grammar), and a n-gram model to classify sentences. Ferraro et al. (2012)
perform sentence classification with a SVM that uses parse tree fragments as fea-
tures. The best model performance is obtained when the 50 000 highest frequency
tree fragments with a maximum height of 3 are used as features. Context-free gram-
mar productions read off directly from the parse trees are also used as features. An
accuracy of 89.1% is obtained with this approach.

2.5.4 SMT-inspired approaches

The final class of approaches we consider are inspired by statistical machine trans-
lation. The noisy channel formulation is usually followed. Suppose that we want to
find the best correct sentence ĉ corresponding to a given incorrect sentence i. Then,
applying Bayes’ rule,

ĉ = arg max
c

P (c|i) = arg max
c

P (c) · P (i|c). (2.5.1)

The model P (i|c) is called an error model, and P (c) is a language model. The
intuition behind the noisy channel model is that some original message (the correct
sentence) has been corrupted during transmission, and the goal is to try and recover
the original message from the received message (the incorrect sentence).

Brockett et al. (2006) propose the use of phrasal SMT techniques to correct mass
noun errors. Their motivation is that grammar errors do not occur in isolation (as
they are essentially seen by statistical classifiers) and often require phrasal rewrites.
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A parallel corpus of correct sentences and artificially constructed incorrect sentences
is used to train the error model. A test set from the Chinese Learner Error Corpus
was used. A recall of 0.618 is obtained on the error type under consideration.

Ehsan and Faili (2013) propose a hybrid approach to grammar correction that
combines a SMT approach with a rule-based grammar checker. An artificial error
corpus was also used to train the SMT model. GEC models are constructed for
English and for Persian. An F1 score of 14% is obtained when only the SMT system
is used. This improves to 22.7% when a hybrid approach is followed.

Park and Levy (2011) take a noisy channel approach to grammar correction,
formulated with weighted finite-state transducers. An n-gram language model and
models for spelling errors, preposition and article choice errors, and word insertion
errors are formulated as FSTs, which are composed to obtain a single model. The
error models are trained with the EM algorithm on an unannotated learner corpus.
This is an example of unsupervised training. The BLEU and METOER machine
translation evaluation techniques were used to evaluate system corrections on the
test set, using up to eight possible reference corrections.

Dahlmeier and Ng (2011a) use phrasal SMT to correct collocation errors. A
paraphrase model that is constructed from models to translate between English and
the first language of the language learners, in this case Chinese, and back. Phrasal
translation models are extracted from a Chinese-English parallel corpus, in both
directions. For an English phrase e and a foreign (Chinese) phrase f , the models
P (e|f) and P (f |e) are trained. These probability models are used to construct a
paraphrase model for English sentences. Let e1 and e2 be English phrases, then the
paraphrase probability model is

P (e1|e2) =
∑
f

P (e1|f)P (f |e2). (2.5.2)

The SMT error correction system is based on this paraphrase model. The model is
augmented with features for spelling, homophones, and synonyms.

Finally, Madnani et al. (2012) use round-trip machine translation to correct sen-
tences. A given English sentence is translated into 8 different pivot languages and
back to English, using Google Translate. The candidate corrections are aligned, and
a lattice of corrections is constructed, such that paths through the lattice may con-
tain corrections from different candidates. A greedy search through the lattice was
found to give the best results.

2.6 Conclusion

In this chapter we surveyed English grammar and grammatical error correction. Sec-
tion 2.1 gave some linguistic background. Section 2.2 gave an overview of grammar
errors made by English language learners. Sources of training and test data were
discussed in Section 2.3, while 2.4 discussed evaluation. In Section 2.5 we reviewed
classification-based approaches (2.5.1), rule-based heuristics (2.5.2), language mod-
elling (2.5.3) and SMT-inspired approaches (2.5.4).

The use of different methods for different error types, as well as significant differ-
ences between the test sets used to evaluate systems, makes it difficult to establish
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which methods currently are the highest-performing ones in this field. For most
error types, it seems that statistical classifiers currently provide the best perfor-
mance. However, all the features used by these classifiers can also be expressed by
systems that are formulated as sentence rewriting models (such as the SMT-inspired
approaches). Rule-based approaches still being used can be recast as probabilistic
models: Their expressive formalisms can be combined with machine learning meth-
ods to automatically acquire the linguistic knowledge needed to perform grammar
correction.



Chapter 3

Automata Theory

In this chapter we develop the formal models that are studied in this thesis. The
foundation of these models was laid by Chomsky (1957; 1959) in his work on gener-
ative grammars as formal descriptions of natural language.

There are a few important differences between the models we study in this chapter
and those of classical automata theory. Firstly, the models here are weighted; an
automaton assigns a weight to input. Secondly, we focus on automata for trees, in
contrast to string automata. Lastly, we are particularly interested in transducers, a
class of formal models which take strings or trees as input, and produce strings or
trees as output, for strings or trees in the domain.

After giving some preliminary definitions, we define weighted finite-state trans-
ducers and weighted finite-state automata. Then we move on to tree automata and
regular tree grammars. Top-down tree transducers and tree-to-string transducers
are defined. Finally, we discuss the kind of natural language transformations that
can be expressed with different transducer classes. Throughout the chapter we give
examples to motivate the use of these models in grammatical error correction.

3.1 Preliminaries

In this section we give formal definitions of concepts used in this chapter and through-
out this thesis.

3.1.1 Sets, relations and alphabets

The set of non-negative integers (including 0) is denoted by N. By [n] we denote
the subset {1, 2, . . . , n} ⊂ N. The set of reals is denoted by R, and the non-negative
reals by R+. We denote by X = {x1, x2, . . .} an infinite set of variables, and let
Xk = {x1, . . . , xk}.

Let A and B be sets. We refer to R ⊆ A × B as a relation on A and B. A
relation on A is subset of A×A. The set of all finite sequences over A is denoted by
A∗. The power set of A, defined as the set of all subsets of A, is denoted by P(A).

Let H, I and J be sets. An I × J matrix over H is a mapping M : I × J →
H (Fülöp and Vogler, 2009). The set of all I × J matrices over H is denoted by
HI×J . We write M(i, j) ∈ H as Mi,j . An I vector over H is defined similarly as

24
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a mapping v : I → H, and an element v(i) ∈ H is denoted by vi. The set of all
I-vectors over H is denoted by HI . An [n]-vector v is denoted by v.

An alphabet is a finite, nonempty set of symbols. Suppose ∆ is an alphabet.
Elements of ∆∗ are called strings. A string language over ∆ is any subset of ∆∗.
The empty string is denoted by ε. We denote (∆∪ε) as ∆ε. The string concatenation
of strings a and b is denoted by a · b.

A ranked alphabet (Σ, rk) is a tuple consisting of an alphabet Σ and a mapping
rk : Σ→ P(N), such that rk(σ) is finite and non-empty for all σ ∈ Σ. For each σ ∈ Σ,
rk(σ) is called the set of ranks of σ. For each k ∈ N, let Σk = {σ ∈ Σ | k ∈ rk(σ)},
the set of all symbols of rank k. Note that it may happen that Σk ∩Σl 6= ∅ for some
k 6= l. We often denote the ranked alphabet (Σ, rk) simply by Σ.

Example 3.1.1 Let ∆ = {a, b, c} be an alphabet. The set {(a, a), (a, b), (b, c)} is a
relation on ∆. Some strings over ∆ are a, ab and abb. The set of all strings where
a is followed by any number of b’s, also described by the regular expression ab∗, is a
string language over ∆.

3.1.2 Trees

Most of the models studied in this thesis are based on trees. We give some definitions
related to trees, following the definitions of Engelfriet (1975) and Fülöp and Vogler
(2009).

Definition 3.1.1 Let Σ be a ranked alphabet, with ( , ) /∈ Σ. The set of all trees
over Σ, denoted by TΣ, is the smallest set T of strings over the alphabet Σ ∪ {( , )}
such that:

- If σ ∈ Σ0, then σ ∈ T .

- For every k ∈ N, k ≥ 1, if σ ∈ Σk and t1, t2, . . . , tk ∈ T , then σ(t1 . . . tk) ∈ T .

For notational convenience, when k = 0, we denote σ() by σ. A tree language
over Σ is any subset of TΣ. A set of trees that extends a tree language TΣ may be
denoted as follows:

Definition 3.1.2 Let S be a set. The set of trees indexed by S, TΣ(S), is defined
inductively:

- S ∪ Σ0 ⊆ TΣ(S).

- For k ∈ N, k ≥ 1, if σ ∈ Σk and t1, t2, . . . , tk ∈ TΣ(S), then σ(t1 . . . tk) ∈
TΣ(S).

Let Q be a set of symbols of rank 1. Then we denote by Q(Xk) the set of trees
{q(x) | q ∈ Q, x ∈ Xk}, and by Q(TΣ) the set of trees {q(t) | q ∈ Q, t ∈ TΣ}.

Next we introduce notation for modifying existing trees.

Definition 3.1.3 Let s1, . . . , sn ∈ Σ0 ∪ S all be different symbols, and σ1, . . . , σn ∈
TΣ(S). The tree concatenation of t ∈ TΣ(S) with σ1, . . . , σn at s1, . . . , sn, denoted
by t〈s1 ← σ1, . . . , sn ← σn〉, is defined as follows:
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- For σ ∈ Σ0 ∪ S,

σ〈s1 ← σ1, . . . , sn ← σn〉 =

{
σi if σ = si,
σ otherwise.

- For σ ∈ Σk and t1, . . . , tk ∈ TΣ,

σ(t1 . . . tk)〈. . .〉 = σ(t1〈. . .〉 . . . tk〈. . .〉),

where 〈. . .〉 abbreviates 〈s1 ← σ1, . . . , sn ← σn〉.

Let k ∈ N, σ ∈ Σk and t = σ(t1, . . . , tk). The set of positions of a tree is defined
by the function pos : TΣ → P(N∗), where

pos(t) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ti)}.

For clarity, when we write a position, “.” is used to separate integers. For
example, 1.1 and 1.2.3.1 denote positions. The label of tree t at position p ∈ N∗,
labelt : N∗ → Σ, is defined by

labelt(p) =

{
σ if p = ε,
labelti(v) if p = iv.

Alternatively, a tree can be defined as a finite, rooted, ordered and labeled di-
rected graph that has no cycles. By means of the positions of a tree, there is a
one-to-one mapping between the ranked symbols in the tree and nodes in the graph
of the tree. The label of a node is the label of its position. For each position
v ∈ pos(t), there is an edge in the graph from the node at position v to the node
at each position vi ∈ pos(t). The node at v is called the parent node of the nodes
at positions vi, and conversely the nodes at each position vi are called child nodes
of the node at position v. A node corresponding to a rank k symbol has k children.
The tree node that has no parents is called the root node. Tree nodes that have
no children are called leaf nodes, and their positions leaf positions. The set of leaf
positions of t is denoted by leafpos(t). Trees are usually drawn with the root at the
top and the leaves at the bottom. We shall use this directionality to refer to the top
and the bottom of a tree. Edges are conventionally drawn without arrows, as their
directionality is always downwards. The left-to-right ordering of the children of a
node corresponds to the order of their positions.

The yield of a tree is the left-to-right concatenation of its leaf symbols. There is
a path from node a to node b if the position of a is a prefix of the position of b. Then
b is called a descendent of a and a is called an ancestor of b. A subtree of a tree t
is determined by a node in t (the root node of the subtree) and all its descendants.
The subtree of t rooted at position v is denoted by t|v. The size of a tree t, denoted
by |t|, is the number of elements in pos(t), i.e., the number of nodes in the tree. The
height of a tree t is a function height : TΣ → N, defined recursively as

height(t) =

{
1 if pos(t) = {ε},
1 + max{height(t|i) | 1 ≤ i ≤ rk(labelt(ε))} otherwise.
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Figure 3.1: Example trees.

Let s ∈ (TΣ(X) ∪ ∆)∗, where Σ is a ranked alphabet and ∆ is an unranked
alphabet. Then s is linear in Xk if each element of Xk occurs at most once in s, and
nondeleting in Xk if each element of Xk occurs at least once in s. A tree t ∈ TΣ is
binarized if none of the symbols in t have a rank greater than 2.

The set of context trees over Σ is the set of trees in TΣ(X) which are linear and
nondeleting in X1. In other words, a context tree is a tree with exactly one variable.

Example 3.1.2 Let Σ be a ranked alphabet such that Σ0 = {a, b, c}, Σ1 = {B}
and Σ2 = {A,C}. In Figure 3.1, T1 ∈ TΣ(X) is a context tree and T2, T3 ∈ TΣ. T3

is obtained by tree concatenation: T3 = T1〈x1 ← T2〉. The set of positions of T2 is
{ε, 1, 2, 2.1}. The root node of T2, at position ε, is labeled C. The leave positions of
T2 are 1 and 2.1, with corresponding labels b and c, respectively. The yield of T2 is
bc. In T1, the node labeled A is an ancestor of the node labeled a, and conversely
the node labeled a is a descendent of the node labeled A. The height of T3 is 4.

3.1.3 Semirings

The automata and grammars that we study in this thesis are weighted. The weights
and operations on weights are formalized by using semirings. This allows us to use
an abstract notion of weights in our automata definitions.

For all a, b, c ∈W , a binary operation ⊕ on set W is associative if (a⊕ b)⊕ c =
a ⊕ (b ⊕ c), and commutative if a ⊕ b = b ⊕ a. Operation ⊗ distributes over ⊕ if
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

Definition 3.1.4 (Mohri et al. (2002)) A semiring is a tuple (W,⊕,⊗), such
that W is a set with an associative and commutative plus operation ⊕ and an as-
sociative times operation ⊗, with identities 0 and 1, respectively. Furthermore, ⊗
distributes over ⊕ and 0⊗ a = a⊗ 0 = 0.
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Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ ∪ {+∞} + × 0 1
Log R ∪ {−∞,+∞} ⊕log + +∞ 0
Tropical R ∪ {−∞,+∞} min + +∞ 0

Table 3.1: Important semirings.

Where there is no ambiguity we shall refer to both the semiring and its underlying
set as W . The set in a semiring does not need to be closed under taking either addi-
tive or multiplicative inverses. This is the primary characteristic that distinguishes
semirings from other algebraic structures such as rings or fields.

A semiring is commutative if ⊗ is commutative. A semiring is complete if the
plus operator ⊕ is extended to infinite summations (see May (2010, chap. 2) or
Mohri (2009) for complete definitions). In particular, a complete semiring W can be
augmented by a unary closure operator ∗, defined by w∗ = ⊕∞i=0w

i for any w ∈ W
(w0 = 1̄ and wn+1 = wn ⊗ w for all n ∈ N).

Though we define automata later in this chapter, we briefly discuss the intuition
behind weighted automata. In general, weights are multiplied to obtain the weight
of a path or derivation, and added over different paths or derivations to obtain the
weight of a string or a tree. Semirings that are important in our context are listed
in Table 3.1 (cf. Mohri (2009)). These semirings are all commutative and complete.
In this thesis we only deal with commutative and complete semirings.

Automata with weights over the Boolean semiring are semantically equivalent to
unweighted automata. The weight of each path is either 0 or 1. Paths with weight
1 are accepted and paths with weights 0 are rejected. The unary closure operation is
defined as 0∗ = 1∗ = 1.

In the probability semiring, weights are usually interpreted as probabilities which
are multiplied and added together. The unary closure operation is defined as w∗ =

1
1−w for 0 ≤ w < 1 and w∗ = +∞ otherwise.

In the log and tropical semirings, weights usually represent negative log probabili-
ties. In the log semiring, the plus operator is defined as a⊕logb = log(exp(a)+exp(b)).

An isomorphism between the probability and the log semirings is given by h :
{R+ ∪+∞} → {R ∪ −∞,+∞} , where

h(p) =


+∞ if p = 0,

− log(p) if p > 0, p ∈ R+,
−∞ if p = +∞.

In the tropical semiring, the weight that an automaton associates with a string
or a tree is the weight of a path with the lowest weight. In the case of negative
log probabilities, this weight corresponds to the weight of the path with the highest
probability. This weight is also known as the Viterbi approximation of the weight of
a string or a tree. In the tropical semiring, the unary closure operation is defined as
w∗ = 0 for w ∈ R+, and w∗ = −∞ otherwise.
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3.2 Weighted finite-state transducers

The first automata formalism we define is weighted finite-state transducers (FSTs).
FSTs are a class of finite automata in which each transition between states is aug-
mented with an output label (in addition to the input label) and a weight. FST-
based models have been applied widely in speech and language processing (Knight
and Al-Onaizan, 1998; Mohri et al., 2002; Pirinen and Lindén, 2010; Gispert et al.,
2010).

Definition 3.2.1 (Droste and Gastin (2009)) A weighted finite-state trans-
ducer over a semiring W is a tuple M = (Q,Σ,∆, µ, λ, ρ), where

- Q is a finite set of states;

- Σ is an input alphabet;

- ∆ is an output alphabet;

- µ : (Σε)× (∆ε)→WQ×Q is a transition mapping;

- λ : Q→W is an initial weight function; and

- ρ : Q→W is a final weight function.

The weight of a transition from state p to state q (p, q ∈ Q) that consumes the
input-output pair (σ, δ) ∈ Σε ×∆ε, is given by µ(σ, δ)p,q. The pair (σ, δ) is referred
to as the transition label. In a concrete representation of M , transitions with weight
0 are usually omitted.

Let σ ∈ Σ and δ ∈ ∆. A transition labeled as (ε, δ) is an input-ε transition,
while a (σ, ε) transition is called output-ε. Transitions labeled as (ε, ε) are called
ε-transitions.

Next we define the semantics of finite-state transducers. A path in M is an
alternating sequence p = (q0, (a1, b1), q1, . . . , qn−1, (an, bn), qn) ∈ Q · ((Σε×∆ε) ·Q)∗.
The run weight of path p is defined as

rw(p) = λ(q0)⊗1≤i≤n µ(ai, bi)qi−1,qi ⊗ ρ(qn), (3.2.1)

where rw(p) ∈ W . The label of p is the input-output pair (s, t), where s ∈ Σ∗ and
t ∈ ∆∗, such that s = a1 · a2 . . . an and t = b1 · b2 . . . bn. Note that multiple paths
through a transducer may have the same label.

A transducer M is regulated if the weight it associates with any pair (s, t) ∈
Σ∗ ×∆∗, defined as

wtM (s, t) = ⊕p:label(p)=(s,t)rw(p), (3.2.2)

is an element ofW , such that wtM (s, t) ∈W and its value is independent of the order
of the ⊕ summation in (3.2.2). Specifically, for transducers without ε-transitions,
there are a finite number of paths, and therefore such transducers are regulated.
Transducers over a commutative and complete semiring are still regulated in the
presence of ε-transitions, as infinite summations are defined. Therefore weighted
transducers over the semirings defined in Section 3.1.3 are all regulated.
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A weighted finite-state automaton (FSA) is a transducer with identical input and
output symbols on all transitions. A transition label (a, a) can be denoted simply by
a if it is clear that we are working with a FSA. The weight of FSA A on string s is
denoted by wtA(s). The class of string languages accepted by FSA over the Boolean
semiring is the class of regular languages.

A string s can be embedded in a FSA by constructing a FSA that associates
weight 1̄ with s, and weight 0̄ to all other strings.

The left projection of FST M yields a FSA, denoted as ↓ M , by omitting the
output labels, such that

wt↓M (s) = ⊕twtM (s, t). (3.2.3)

Similarly, the right projection M ↓ can be obtained by omitting the input labels.
Transducers can be combined with the operation of composition. Suppose that

M1 and M2 are FSTs over the same commutative and complete semiring W such
that the output alphabet of M1 and the input alphabet of M2 coincides. Then the
composition of M1 and M2 is a transducer M = M1�M2, such that the weight that
M associates with any string pair (s, t) is

wtM (s, t) = ⊕rwtM1(s, r)⊗ wtM2(r, t), (3.2.4)

FSTs are closed under composition: For any two transducers M1 and M2 under
the conditions above the composite transducerM can be constructed. Consequently,
composition can be extended to a cascade of n transducers, M1, . . . ,Mn, such that
M = M1 �M2 � . . .�Mn.

Example 3.2.1 A FSA L over the alphabet ∆ = {the, a, man, children, help, helps
} is given in Figure 3.2. L represents a bigram language model, which is a Markov
model over the words in ∆. The alphabet of states is ∆ε; each state represents the
previous word in the path. Weights are defined over the tropical semiring. The
initial weight function is 0.0 for the ε state and ∞ for all other states, and all states
are assigned a final weight of 0.0. In language models, ε-transitions are used to
indicate a backoff to a lower order model. The transition from state a to state ε
is an ε-transition. An example path through the automaton is (ε, the, the, man,
man, helps, helps, the, the, children, children), that has the label the man helps the
children.

Example 3.2.2 A single-state FST R over the same alphabet ∆ is given in Figure
3.3. This transducer is a simple error model that performs transformations between
incorrect and correct sentences. As there is only one state, word transitions are
independent of the path history. The transducer has input-ε and output-ε rules to
insert or delete the article the.

Example 3.2.3 An embedded FSA E for the string the man help the children is
given in Figure 3.4.

Examples of composition and projection are given in Section 4.4, where FST
inference is discussed.
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ε

the

children

a

man

help

helps

children/3.72

the/2.95

a/3.0

ε/1.63

man/3.71

children/3.48

man/3.39

man/2.85

the/1.80

the/1.35

help/3.44

help/4.27

helps/3.64

Figure 3.2: A bigram language model FSA.

3.3 Tree automata and tree grammars

In this section, we start by formally defining context-free grammars (CFGs). Then
we define tree automata, finite-state machines for trees. Regular tree grammars, a
closely related formalism, are also defined.

3.3.1 Context-free grammars

Definition 3.3.1 (Chomsky (1959)) A weighted context-free grammar over
a semiring W is a tuple G = (N,∆, P, π, S), where
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ε

the:a/0.04

the:ε/0.75

ε:the/1.14

man:man/0.011

help:help/0.04

help:helps/1.03

helps:helps/0.13

children:children/0.02

the:the/1.81

Figure 3.3: An error model FST.

0 1 2 3 4 5

the/0.0 man/0.0 help/0.0 the/0.0 children/0.0

Figure 3.4: An embedded automaton.

- N is an alphabet of nonterminals;

- ∆ is a terminal alphabet;

- P is a finite set of productions, each of the form A → γ, where A ∈ N and
γ ∈ (∆ ∪N)∗;

- π : P →W is a weight function; and

- S ∈ N is the initial nonterminal symbol.

For every α, β ∈ (N ∪∆)∗, a derivation relation α ⇒G β is defined if and only
if there exist strings α1, α2 ∈ (N ∪ ∆)∗ and a production p : A → γ such that
α = α1 · A · α2 and β = α1 · γ · α2. The reflexive and transitive closure of ⇒G is
denoted by ⇒∗G. A derivation relation α ⇒ β obtained by applying production p is
denoted by α⇒p

G β.
The sequence d = (p1, . . . , pm) is a derivation of the terminal string s if S ⇒p1

G

t1 ⇒p2

G . . . ⇒pm
G s, where ti ∈ (∆ ∪ N)∗ for 1 ≤ i < m. A derivation is left-most if

the left-most nonterminal in ti is replaced at each derivation step. Unless specified
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otherwise, we assume that derivations are left-most. The string language generated
by a CFG is the set of all strings that can be derived from the initial nonterminal.
The weight of a derivation d = (p1, . . . , pm) is

wt(d) = ⊗mi=1π(pi). (3.3.1)

For a production p ∈ P , where p : A → γ, the left hand side of p, A, is denoted
by LHS(p), and the right hand side of p, γ, by RHS(p).

A CFG derivation can be represented as a tree, called a derivation tree. The
initial nonterminal is the root of the tree. For each production in the derivation, the
symbols on the right hand side are the children of the left hand side nonterminal.
The terminal string of the derivation is the yield of the derivation tree.

A context-free grammar is in Chomsky normal form (CNF) if each production
has the form A → B C or A → a, where A,B,C ∈ N and a ∈ ∆. The derivation
trees of CNF grammars are binary. Any CFG can be converted to a CNF grammar
generating the same string language.

In a CFG that represents a constituency grammar, the terminals are words and
the nonterminals are categories. The nonterminal S, indicating a simple clause
or a sentence, is usually the initial nonterminal. CFG derivation trees are parse
trees. Productions in which the right hand side contains terminals are called lexical
productions, as they produce words.

Example 3.3.1 Let L be a CFG with nonterminal alphabet N = {S, VP, NP, DT,
NN, NNS, VBP, VBZ} and terminal alphabet ∆ = {the, a, man, children, help,
helps}. Example productions of L are given below.

(a) S → NP VP

(b) NP → DT NN

(c) NP → DT NNS

(d) VP → VBP NP

(e) VP → VBZ NP

(f) DT → the

(g) NN → man

(h) NNS → children

(i) VBP → help

(j) VBZ → helps
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3.3.2 Weighted tree automata

Definition 3.3.2 (Fülöp and Vogler (2009)) A weighted tree automaton over
a semiring W is a tuple A = (Q,Σ, µ, ν), where

- Q is a finite set of states;

- Σ is a ranked alphabet of input symbols;

- µ = (µk|k ∈ N) is a family of transition mappings µk : Σk →WQk×Q; and

- ν ∈WQ is the root weight vector.

The weight of a transition from a tuple of states p ∈ Qk to a state q ∈ Q, that
consumes the ranked symbol σ ∈ Σk, is given by µk(σ)p,q ∈ W . For the transition,
the weight vector over all states q ∈ Q is denoted by µk(σ)p ∈WQ.

Next we define the run semantics of the tree automaton A. A run r of A on tree
t ∈ TΣ is a mapping r : pos(t) → Q. Let RA(t) be the set of all runs of A on t.
The run induced by r ∈ RA(t) at position p is the run r′ on the subtree t|p, defined
for every p′ ∈ pos(r|p) as r′(p′) = r(p.p′). The weight of a run r on tree t is defined
recursively as

rw(r) =

{
µk(σ)(ε,r(ε)) if t = σ,

rw(r|1)⊗ . . .⊗ rw(r|k)⊗ µk(σ)(r(1),...,r(k)),r(ε) if t = σ(t1, . . . , tk).
(3.3.2)

A tree series is a mapping L : TΣ → W that assigns a weight in semiring W to
trees over the ranked alphabet Σ. The weight that A associates with each tree t is
given by the tree series wt : TΣ →W , where

wt(t) = ⊕r∈RA(t)rw(r)⊗ νr(ε). (3.3.3)

A tree automaton over the Boolean semiring accepts trees that are assigned
weight 1 and rejects trees that are assigned weight 0. The class of tree languages
accepted by tree automata over the Boolean semiring is called the regular tree lan-
guages. The set of derivation trees of any context-free grammar is a regular tree
language. Furthermore, for each regular tree language L, the set of yields of the
trees in L is a context-free language.

3.3.3 Regular tree grammars

Weighted regular tree grammars (RTGs) are the generative counterpart of weighted
tree automata.

Definition 3.3.3 (May (2010)) A weighted regular tree grammar over a semir-
ing W is a tuple G = (N,Σ, P, π, S), where

- N is a finite set of nonterminals;

- Σ is a ranked alphabet of terminals;

- P is a set of productions, each of the form A→ t, where A ∈ N and t ∈ TΣ(N);
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- π : P →W is a weight function for the productions; and

- S ∈ N is the initial nonterminal.

The rewrite semantics for the grammar is defined as follows. The derivation
relation ⇒M is defined for every s, s′ ∈ TΣ(N) by s⇒G s

′ if and only if there exists
a context tree c ∈ TΣ(X ∪ N) over Σ ∪ N , a nonterminal n ∈ N and a production
p ∈ P , with p : n→ t such that s = c〈x1 ← n〉 and s′ = c〈x1 ← t〉.

A derivation relation s⇒G s
′ obtained by applying production p ∈ P is denoted

as s ⇒p
G s′. A derivation is called left-most if all the leaves in s to the left of the

node where the substitution is made, are terminal symbols. Unless noted otherwise,
we will assume that all derivations are left-most. The transitive and reflexive closure
of ⇒G is denoted by ⇒∗G.

The derivation sequence d = (p1, . . . , pm), where pi ∈ R for all 1 ≤ i ≤ m, is a
derivation of the pair (a, b) if a ⇒p1

G t1 ⇒p2

G t2 . . . tm−1 ⇒pm
G b, where ti ∈ TΣ(N)

for all 1 ≤ i < m. For notational convenience, d : a ⇒∗G b denotes any derivation
sequence d of the pair (a, b), where a, b ∈ TΣ(N).

The weight of a derivation d = (p1, . . . , pm) of a pair (a, b) is defined as

dw(d) = π(p1)⊗ . . .⊗ π(pm), (3.3.4)

where dw(d) ∈W .
It is possible that different (left-most) derivations will produce the same tree,

just as different paths in a FSA may have the same string as label. The weight that
G associates with each tree t ∈ TΣ is given by the tree series wtG : TΣ →W , where

wtG(t) = ⊕d:S⇒∗Gtdw(d). (3.3.5)

The tree series is defined if W is a commutative and complete semiring, corre-
sponding to the similar condition for FSTs. RTG productions of the form A → B,
where A,B ∈ N , are called chain productions. They are comparable to ε-transitions
in a FSA. The presence of chain productions in a RTG can lead to an infinite num-
ber of possible derivations. For any RTG G, a RTG without chain productions that
recognizes the same tree series can be constructed.

An RTG G is in normal form if each of its productions has the form A →
a(B1 . . . Bk), for k ∈ N, a ∈ Σk and A,B1, . . . , Bk ∈ N . For an arbitrary RTG, an
equivalent normal form RTG can be constructed. For any (normal form) RTG, a
weighted tree automaton that recognizes the same tree series can be constructed.
A normal form RTG G is bottom-up deterministic if for each k ∈ N, a ∈ Σk and
B1, . . . , Bk ∈ N there is at most one production of the form A→ a(B1 . . . Bk).

Example 3.3.2 Let L be a RTG which generates parse trees in TΣ(∆) for the
vocabulary ∆ = {the, a, man, children, help, helps} and the ranked category labels
Σ = {S, VP, NP, DT, NN, NNS, VBP, VBZ}. Example productions of L are given
in Figure 3.5. A nonterminal label denotes a category and the head POS tag of
the phrase that is generated from that state. The non-terminals are used to model
subject-verb agreement.
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3.4 Weighted tree transducers

A weighted tree transducer is a finite-state machine that associates weights with
input-output tree pair transformations. Tree transducers are defined with tree rewrit-
ing systems rather than with a transition function, as rewriting systems are better
suited to represent recursive trees structures. Transducer states are considered to be
a ranked alphabet where all symbols have rank 1. During tree rewriting, some nodes
in the partial output tree are labeled as states.

Tree transducer variants are defined to process input trees bottom-up or top-
down. In this thesis, we work with top-down tree transducers. We also define
tree-to-string transducers, which take trees as input and produce strings as output.

3.4.1 Top-down tree transducers

Definition 3.4.1 (Maletti (2006)) A weighted extended top-down tree trans-
ducer over a semiring W is a tuple M = (Q,Σ,∆, R, π, S), where

- Q is a ranked alphabet of states, all of rank 1;

- Σ is a ranked alphabet of input symbols;

- ∆ is a ranked alphabet of output symbols;

- R is a finite set of rules, each of the form q(v)→ u, where q ∈ Q, v ∈ TΣ(Xk)
and u ∈ T∆(Q(Xk)) for some k ∈ N, such that v is linear and nondeleting in
Xk;

- π : R→W is a weight function on the rules; and

- S ⊆ Q is a set of initial states.

M is a weighted (non-extended) top-down tree transducer if each rule r ∈ R has
the form q(σ(x1 . . . xk)) → u, where k ∈ N, σ ∈ Σk, q ∈ Q and u ∈ T∆(Q(Xk)).
A weighted top-down tree transducer is denoted by T, and a weighted extended
top-down tree transducer by xT.

The rewrite semantics for an xT is defined as follows (Maletti, 2006). The deriva-
tion relation ⇒M is defined for every s, s′ ∈ T∆(Q(TΣ)) by s ⇒M s′ if and only if
there exist trees t1, . . . , tk ∈ TΣ and t ∈ Q(TΣ), a context tree c ∈ T∆(X ∪ Q(TΣ))
over ∆ ∪Q ∪ Σ and a rule p ∈ R, p : l→ u, such that

- s = c〈x1 ← t〉;

- t = l〈x1 ← t1, . . . , xk ← tk〉; and

- s′ = c〈x1 ← (u〈x1 ← t1, . . . , xk ← tk〉)〉.

A derivation relation s ⇒M s′, obtained by applying a rule r, is denoted as
s ⇒r

M s′. A derivation is called left-most if the state q in s where the rewrite is
performed, is the left-most state is s. Unless stated otherwise, we will assume that
all derivations are left-most. The transitive and reflexive closure of ⇒M is denoted
by ⇒∗M .
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The derivation sequence d = (r1, . . . , rm), where ri ∈ R for all 1 ≤ i ≤ m, is a
derivation of the pair (a, b) if a⇒r1

M t1 ⇒r2
M t2 . . . tm−1 ⇒rm

M b, where ti ∈ T∆(Q(TΣ))
for all 1 ≤ i < m. For notational convenience, d : a ⇒∗M b denotes any derivation
sequence d of the pair (a, b), where a ∈ TΣ and b ∈ T∆.

The weight of a derivation d = (r1, . . . , rm) of a pair (a, b) is defined as

dw(d) = π(r1)⊗ . . .⊗ π(rm), (3.4.1)

where dw(d) ∈W .
A weighted tree transformation is a mapping τ : TΣ × T∆ → W , where Σ and ∆

are ranked alphabets and W is a commutative and complete semiring. The weight
that M associates with each pair (s, t) ∈ TΣ × T∆ of input-output trees is given by
the weighted tree transformation wtM (s, t) : TΣ × T∆ →W , defined as

wtM (s, t) = ⊕d:q(s)⇒∗M t,q∈Sdw(d). (3.4.2)

M is linear if the right hand side of each rule is linear, and nondeleting if the
right hand side of each rule in nondeleting with respect to Xk, where k is the number
of variables on the rule left hand side. Linear and nondeleting tree transducers are
denoted by L and N, respectively. For example, xLNT denotes an extended linear
and nondeleting top-down tree transducer.

Suppose q, p ∈ Q, and u ∈ T∆(Q(X)) and v ∈ TΣ(X) are context trees over
∆ ∪ Q and Σ, respectively. A transducer rule r ∈ R is called input-ε if it has the
form q(x1) → u, and output-ε if it has the form q(v) → p(x1). A transducer is
input-ε-free if it has no input-ε rules, and output-ε-free if it has no output-ε rules.
A chain rule has the form q(x1)→ p(x1).

Look-ahead restrictions can be added to the left hand side of transducer rules.
We use one-symbol look-ahead that restricts the root node of the subtree matching
a variable to a specific ranked symbol. For any transducer with one-symbol look-
ahead, an equivalent transducer without look-ahead restrictions can be constructed
by augmenting the state symbols.

For notational convenience, when tree transducer rules are represented visually,
as in Figure 3.6, states and the nodes directly underneath them are merged; q(σ) is
denoted by q.σ, where q is a state and σ is a ranked symbol. One-symbol look-ahead
of σ to variable xi ∈ X is denoted by xi:σ.

Example 3.4.1 Let M be an xT that performs transformations between correct
and incorrect sentences. Example xT rules for M are given in Figure 3.6. Rules
(a) and (b) are equivalent rules used respectively in transducers without and with
one-symbol look-ahead. For notational convenience we mostly use transducer rules
with one-symbol look-ahead. Rule (d) is an input-ε rule. Rule (e) expresses the same
transformation (inserting the) as (d), but is not an input-ε rule.

In the application of tree transducers in NLP, there is specific interest in the
transformations in the class of input-ε-free xLNT with one-symbol look-ahead. Note
that this is for the case where an output tree is given and the goal is to find input
trees. When we perform grammar correction (or tasks such as machine translation) it
is not necessary to copy subtrees. When deletion should be performed, it is defined for
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specific words or phrases, not for uninspected subtrees. As shown in Example 3.4.1,
it makes more sense to define insertions without using input-ε rules. In addition to
linguistic motivations, removing these restrictions on transducer rules may markedly
increase the complexity of performing transducer inference.

3.4.2 Tree-to-string transducers

Several problems in NLP, including parsing and syntax-based machine translation,
involve transformations between trees and strings. To express such transformations,
extended top-down transducers are modified to produce strings rather than trees as
output.

Definition 3.4.2 (May (2010)) A weighted extended top-down tree-to-string
transducer over a semiring W is a tuple M = (Q,Σ,∆, R, π, S), where

- Q,Σ, π and S are defined as for weighted extended top-down tree transducers;

- ∆ is an (unranked) alphabet of output symbols; and

- R is a finite set of rules, each of the form q(u)→ v, where q ∈ Q, u ∈ TΣ(Xk)
and v ∈ (∆ ∪ Q(Xk))

∗ for some k ∈ N, such that v is linear and nondeleting
in Xk.

A (non-extended) tree-to-string transducer is defined by placing the same restric-
tion on rule left hand sides than the corresponding definition for tree transducers.
The classes of weighted and weighted extended top-down tree-to-string transducers
are denoted by TS and xTS, respectively. Linear and nondeleting transducer classes,
as well as input-ε and output-ε rules, are defined as for tree transducers. Tree-to-
string transducer rules of the form q(u)→ ε, where q ∈ Q, u ∈ TΣ, are also output-ε
rules.

The rewrite semantics for an xTS is defined as follows. The derivation relation
⇒M is defined on elements of (∆∪Q(TΣ))∗. These elements are sequences of terminal
symbols and trees. The string concatenation and tree concatenation operations are
extended to these sequences. For every s, s′ ∈ (∆∪Q(TΣ))∗, the relation s⇒M s′ is
defined if and only if there exist trees t1, . . . , tk ∈ TΣ, t ∈ Q(TΣ), α, β ∈ (∆∪Q(TΣ))∗

and a rule r ∈ R with r : l→ u, such that

- s = α · t · β;

- t = l〈x1 ← t1, . . . , xk ← tk〉; and

- s′ = α · u〈x1 ← t1, . . . , xk ← tk〉 · β.

A derivation relation s ⇒r
M s′, the closure ⇒∗M , a derivation d = (r1, . . . , rm),

the derivation weight dw(d) and left-most derivations are all defined as for xT.
A weighted tree-to-string transformation is a mapping τ : TΣ ×∆∗ → W , where

Σ and ∆ are ranked alphabets and W is a commutative and complete semiring. The
weight that M associates with each pair (s, t) ∈ TΣ × ∆∗ is given by the weighted
tree-to-string transformation wtM (s, t) : TΣ ×∆→W , defined as

wt(s, t) = ⊕d:q(s)⇒∗M t,q∈Sdw(d). (3.4.3)
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Example 3.4.2 Rules of a tree-to-string transducer that transforms correct trees
to incorrect sentences are given in Figure 3.7. These rules correspond to the tree(-
to-tree) transducer rules in Figure 3.6.

We briefly mention two related formalisms also used in NLP. Weighted syn-
chronous context-free grammar (SCFG) (Chiang, 2007) is a formalism that expresses
transformations similar to single-state NLTS models with one-symbol look-ahead.
Weighted synchronous tree substitution grammars (STSGs) (Eisner, 2003) are closely
related to single-state, one-symbol look-ahead xLNTs. Their non-synchronous coun-
terparts, Tree Substitution Grammars (TSGs), are closely related to RTGs.

3.5 Natural language transformations

Transducers are used in NLP to perform linguistically motivated transformations.
Sentences are represented as strings and constituency parse trees as trees. A FST
performs transformations between two sentences. Tree transducers perform transfor-
mations between parse trees, and tree-to-string transducers between parse trees and
sentences. For many applications, even when the result of a transformation is a parse
tree, we are ultimately interested in the sentence yield of that tree. Knight (2007)
identifies four properties that transducers should have to perform useful linguistic
transformations:

- Expressiveness: Transducers should be expressive enough to capture compli-
cated natural language transformations.

- Inclusiveness: More expressive formalisms should not lose the abilities of sim-
pler transformations.

- Modularity : Complicated transformations should be decomposable into cas-
cades of simple transformations.

- Teachability : It should be possible to infer linguistically plausible transforma-
tions for the transducers from observed data.

We now discuss the first two of these properties. Modularity refers to transducer
composition, which is discussed under tree transducer inference in Section 4.6.2.
Teachability refers to tree transducer training, presented in Section 4.6.3.

3.5.1 Expressiveness

There are several kinds of transformations that can be performed with tree transducer
rules (DeNeefe et al., 2007). We list some of these transformations below, and give
examples in Figure 3.8. These transformations were originally identified for machine
translation, but we discuss them in the context of grammatical error correction.

A rewrite rule that has a word either as a leaf of the left hand side tree or as a
symbol on the right hand side is called a lexical rule. A rule is an identity rewrite
if the yield of the left hand side tree is equal to the right hand side string (when
ignoring the RHS states). In this section we are concerned with rules that perform
non-identity lexical rewrites. The transformations are expressed as xTS rules.
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- Constituent phrase rewriting
A constituency phrase is rewritten directly as another phrase, without using
any variables. The depth of the left hand side rule tree is greater than 2.

- Non-constituent phrase rewriting
A (contiguous) phrase of words that is not a constituency phrase, is rewritten.
The remaining sub-constituents of the constituent phrases that partly overlap
with the phrase are represented by variables. This may be helpful for example
in modelling collocation phrases, which are often not constituency phrases.

- Non-contiguous phrase rewriting
Non-adjacent, linguistically related words are rewritten. For example, in subject-
verb agreement it is possible that the head noun of the subject is not adjacent
to the verb. Non-contiguous phrase rewriting can handle such constructions.

- Context-sensitive word insertion or deletion
Performing word insertions and deletions in a syntactic context is useful, espe-
cially for the insertion and deletion of articles.

- Constituent reordering
Phrase reordering is an important motivation for the use of tree transducers
in statistical machine translation. An example of reordering in the context of
grammar errors is the incorrect order of the noun and adjective phrases.

Most of these phrase rewrites require extended rule left hand sides; they cannot
be preformed by non-extended tree transducers.

3.5.2 Inclusiveness

A tree transducer class is inclusive if it generalizes FSTs. To perform the class of
rewrites that FSTs perform, input-ε and output-ε rules should be allowed in tree
transducers or tree-to-string transducers. The rewrites that these rules perform
correspond to FST input-ε and output-ε transitions.

However, in practice the use of these ε-rules are commonly restricted or disal-
lowed as they may lead to unbounded insertions. Suppose that a string s is applied
backwards to a tree-to-string transducerM , resulting in an application RTG A. The
presence of output-ε rules may lead to cycles in M . If there are cycles in M , then
the set of trees that A generates with non-zero weight (which is the decoding search
space) may be infinite. However, it is possible to eliminate cycles by removing some
of the output-ε rules; this will restrict the search space to be finite.

A FST model with input-ε or output-ε transitions with non-zero weights may
also lead to an application FSA with cycles. However, FST implementations can
handle decoding in an infinite search space more efficiently than tree transducer
implementations.

3.6 Conclusion

This chapter introduced the automata theoretic models that we use in this thesis
to model grammar correction. Section 3.1 provided some preliminary definitions.



CHAPTER 3. AUTOMATA THEORY 41

Section 3.2 defined FSA and FST models. Weighted tree automata and regular tree
grammars were defined in Section 3.3. Section 3.4 defined tree transducers and tree-
to-string transducers. Finally, Section 3.5 discussed syntax-based natural language
transformations and the properties that tree transducer models need to perform these
transformations. In the next chapter we consider the application of these models to
probabilistic modelling.
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s→ svbz
(a)

s→ svbp
(b)

svbz → S

VP

vbz

npnn

(c)

svbp → S

vpvbpnpnns

(d)

vpvbp → VP

npnnsvbp

(e)

npnns → NP

nnsdt

(f)

npnn → NP

nndt

(g)

npnn → NP

nnDT

the
(h)

dt→ DT

a
(i)

dt→ DT

the
(j)

nn→ NN

man
(k)

nns→ NNS

children
(l)

vbp→ VBP

help

(m)

vbz → VBZ

helps

(n)

Figure 3.5: Regular tree grammar productions.
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qS .S

x2x1

→ S

qvp.x2qnp.x1

(a)

q.S

x2:VPx1:NP

→ S

q.x2q.x1

(b)

q.NP

NN

man

DT

the

→ NP

NN

man

DT

the
(c)

qNN.x1 → NP

qNN.x1DT

the
(d)

q.NP

x1:NN

→ NP

q.x1DT

the
(e)

q.NP

x1:NNDT

the

→ NP

q.x1

(f)

q.VBZ

helps

→ VBZ

helps

(g)

q.VBZ

helps

→ VBP

help

(h)

Figure 3.6: Extended tree transducer rules.
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q.S

x2:VPx1:NP

→ q.x1 q.x2

(a)

q.NP

NN

man

DT

the

→ the man

(b)

q.NP

x1:NNDT

the

→ q.x1

(c)

q.NP

x1:NN

→ the q.x1

(d)

q.VBZ

helps

→ helps

(e)

q.VBZ

helps

→ help

(f)

Figure 3.7: Extended tree-to-string transducer rules.
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q.NP

NN

accident

DT

the

→ accidents

(a) Constituent phrase rewrite

q.S

VP

x2:NPVBZ

helps

NP

NN

man

x1:DT

→ q.x1 man help q.x2

(b) Non-constituent phrase rewrite

q.S

VP

x3:NPVBZ

helps

NP

x2:SBARNP

NN

man

x1:DT

→ q.x1 man q.x2 help q.x3

(c) Non-contiguous phrase rewrite

q.NP

x1:NNDT

a

→ q.x1 q.NP

x1:NN

→ a q.x1

(d) Context-sensitive word insertion and deletion

q.NP

x2:NNx1:ADJP

→ q.x2 q.x1

(e) Constituent reordering

Figure 3.8: Linguistically expressive xTS transformations.



Chapter 4

Probabilistic Models

In this chapter we present the probabilistic models used in this thesis. We start
by introducing representation, inference and training in probabilistic models. Then
we discuss n-gram language models and statistical syntactic parsing. In this thesis
probabilistic modelling is performed mainly with weighted automata and transduc-
ers. We define probabilistic models for FSTs, RTGs, tree transducers and tree-to-
string transducers. Unless stated otherwise, automata weights in this chapter are
from the probability semiring. In practice, however, weights usually represent log
probabilities, using the log or tropical semirings.

4.1 Probabilistic modelling

The goal of supervised machine learning is to learn a function f : X → Y, where X
is the set of possible inputs and Y is the set of possible outputs, from a training set.
A training set is a set of N input-output pairs (x1, y1), . . . , (xN , yN ), where xi ∈ X ,
yi ∈ Y.

The probabilistic approach to machine learning is to learn a probability distribu-
tion over a set of variables that represents that domain X and the range Y of f . The
set of variables may also include hidden variables that represent neither the input
nor the output of f .

In this section we discuss how probability distributions are represented, how they
are used to predict the value of output variables given the value of input variables,
and how their parameters are estimated from training data.

4.1.1 Representation

Suppose we have K ordered random variables x1, x2, . . . , xK . By the chain rule of
probability the joint distribution over these variables can be factored as

P (x1, . . . , xK) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xK |x1, . . . xK−1). (4.1.1)

Suppose that each of the variables can take M discrete values. Then the dis-
tribution p(xi|x1, . . . , xi−1) can be represented with a table of size M i, of which
M i−1(M − 1) are free parameters. In total the probability model will have O(MK)

46
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parameters. For most real-world problems it is not feasible to estimate so many
parameters from training data, or even to store them.

In order to represent such a joint distribution compactly, conditional indepen-
dence assumptions should be made about the relation between variables in the dis-
tribution. Suppose x, y and z are random variables. Then x and y are conditionally
independent given z, denoted by x ⊥ y | z, if and only if

P (x, y|z) = P (x|z)P (y|z). (4.1.2)

A common independence assumption to make is the Markov assumption:

xi+1 ⊥ (x1, . . . , xi−1) | xi for all i with 1 ≤ i < n. (4.1.3)

The probability distribution then factors as

P (x1, . . . , xn) = P (x1)
n∏
i=2

P (xi|xi−1). (4.1.4)

This model is called a Markov chain. A generalization of a Markov chain is
an m-th order Markov chain, where each variable is conditioned on the m previous
variables. In this model, the probability distribution factors as

P (x1, . . . , xn) = P (x1) . . . P (xm|x1, . . . , xm−1)
n∏

i=(m+1)

P (xi|xi−1, . . . , xi−m).

(4.1.5)
In general, a probability distribution can be factored so that each term represents

some event in the data, which is only conditioned on other events that influence it
directly.

Probabilistic graphical models (PGMs) is a framework to represent probabil-
ity distributions by making conditional independence assumptions (Murphy, 2012,
chap. 10). The factorization of a probability distribution is represented as a graph,
where nodes represent random variables and edges are used to encode conditional
independence assumptions between variables. Within the framework of PGMs meth-
ods for the representation, inference and training of probabilistic models have been
developed. We do not use PGMs explicitly in this thesis, but many of the models
we use can also be expressed with them.

4.1.2 Inference

Probability distributions are used to perform probabilistic inference. Inference refers
to the task of estimating unknown qualities from known qualities. Suppose that
we have a joint distribution P (x,y, z|θ), where x is a set of input variables, y a
set of output variables, z a set of hidden variables, and θ the model parameters.
For notational convenience θ is usually omitted where it is implied. The inference
problem of finding the best output variables for a given set of input variables is
referred to as decoding.

To perform inference we may either compute the joint distribution of the input
and output variables

P (x,y) =
∑
z

P (x,y, z) (4.1.6)
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or the conditional distribution of the output variables given the input variables

P (y|x) =
∑
z

P (y, z|x), (4.1.7)

where
P (y, z|x) =

P (x,y, z)

P (x)
. (4.1.8)

In both cases the hidden variables z are marginalized out of the distribution.

4.1.3 Training

Training or learning refers to the estimation of the parameters θ of a probability
distribution, given some training data D of variable values. θ can be estimated as

θ̂ = arg max
θ

P (θ|D) (4.1.9)

= arg max
θ

P (D|θ)P (θ). (4.1.10)

The term P (θ|D) is called the posterior, P (D|θ) the likelihood and P (θ) the prior
of the distribution. In this thesis we usually estimate model parameters with the
maximum likelihood estimate (MLE)

θ̂ = arg max
θ

P (D|θ), (4.1.11)

which corresponds to assuming a uniform prior.
in which case a uniform prior is assumed.
Suppose that D consists of N training examples, each of the form (xi,yi). The

goal of MLE training is find parameters θ that maximize the observed data log like-
lihood

l(θ) = logP (D|θ) (4.1.12)

=

N∑
i=1

logP (xi,yi|θ) (4.1.13)

=

N∑
i=1

log

[∑
zi

P (xi,yi, zi|θ)

]
. (4.1.14)

The complete data log likelihood is defined as

lc(θ) =

N∑
i=1

logP (xi,yi, zi|θ). (4.1.15)

If there are no hidden variables, the training data is complete. For the family of
exponential probability distributions, the likelihood function is concave if the training
data is complete. The likelihood function also factorizes over the model parameters.
In the presence of these two properties, the MLE of the model parameters can be
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computed simply by normalized frequency counts of events in the training data. For
many of the models in this thesis, parameters can be estimated in this way.

A weakness of MLE is the 0 count problem. If an event does not occur in the
training data, it will be assigned a probability of 0. Usually, we do not want to
assign 0 probabilities to any event in the space of possible events. One solution to
this problem is to use a (non-uniform) prior distribution. Another, related solution
is smoothing, i.e. adjusting the frequency of events so that no event has a zero
probability. A simple smoothing method is called plus one smoothing. Here, a count
of 1 is added to the frequency of all events in the event space. Plus one smoothing
corresponds to assuming a symmetric Dirichlet prior. Another smoothing technique
that we use in this thesis, Good-Turing re-estimation, is described in Section 6.2.1.

In the case of hidden (or missing) variables, the likelihood no longer factorizes
and is no longer concave (Murphy, 2012, chap. 11). In this case the goal of the
training algorithm is to find a “good” local optimum for the likelihood function. One
strategy is to use gradient descent or some other optimization method to maximize
the likelihood function directly. Another strategy is to use the expectation maxi-
mization (EM) algorithm (Dempster et al., 1977), an algorithm devised specifically
to optimize likelihood functions. EM is a simple iterative algorithm that performs
closed-form updates at each step, and has some theoretical guarantees about increas-
ing the likelihood at each iteration. It converges towards a local optimum, which is
sensitive to the initial parameters of the algorithm. One strategy to ensure that a
good local optimum is found is to run the algorithm several times, using (different)
randomly chosen initial parameter values. An alternative is to use an approximate
maximum likelihood estimate, estimated from some approximation of the event space
without latent variables, to initialize the parameters.

EM exploits the fact that if the data and hidden variables were fully observed
the ML estimate would be easy to compute. Suppose that θ0 is the initial parameter
vector and θj is the parameter vector after iteration number j of the EM algorithm.
The expected complete data log likelihood (Murphy, 2012, chap. 11) is defined as

Q(θ, θj−1) = E[lc(θ)|θj−1]. (4.1.16)

The function computes the expected value of lc(θ), for which some of the variables
are hidden, given the parameter estimates θj−1 of the previous iteration. The goal of
the E-step is to compute the expected sufficient statistics, the terms inside Q(θ, θj−1)
that the MLE depends on. Usually, these statistics are fractional counts of the events
associated with the hidden variables, estimated by performing inference using the
θj−1 parameter estimate.

The goal of the M-step is to optimize the function Q with respect to θ:

θj = arg max
θ

Q(θ, θj−1). (4.1.17)

This is usually computed by normalizing the fractional counts computed in the E-
step.

The EM algorithm is performed by iterating between the E-step and the M-step
for a set number of iterations, or until the change in expected complete data log
likelihood falls below a set threshold.



CHAPTER 4. PROBABILISTIC MODELS 50

The theoretical basis for EM lies therein that the expected complete data log
likelihood is a lower bound for the log likelihood, and that EM will monotonically
increase the observed data log likelihood at each iteration until a local maximum is
reached. A proof of this can be found in Murphy (2012, chap. 11).

4.2 Language models

Language models (LMs) assign probabilities to sentences. They are used widely in
speech and language processing. A sentence is represented as a string s ∈ ∆∗, where
∆ is the vocabulary of the language (a finite set of words in the language). Let
s = w1, w2, . . . wn, where wi ∈ ∆ for 1 ≤ i ≤ n. Then the language model is a
probability distribution over ∆∗ such that

P (s) = P (sstart, w1, w2, . . . , wn, sstop), (4.2.1)

where sstart and sstop are reserved words in the vocabulary denoting the beginning
and end of the sentence, respectively.

An n-gram language model is an (n − 1)th order Markov chain over words (an
n-gram is a sequence of n consecutive words). For n = 1, 2, 3 such it is referred to as
a unigram, bigram or trigram model, respectively. The most widely-used language
models are trigram models. Usually a vocabulary is specified for the model, and all
other words are mapped to a reserved word, typically denoted as <unk>.

Even though an n-gram model makes strong local independence assumptions,
it still suffers from data sparseness: A trigram model has O(v3) parameters for a
vocabulary of size v. For a typical 64000 word vocabulary there are far too many
parameters to be estimated even from very large text corpora. Most of the possible
trigrams will never appear in the text. The solution is to combine n-gram models
of different orders. There are different ways to do this, usually in combination with
smoothing. The state-of-the-art method is considered to be modified Kneser-Ney
smoothing (Chen and Goodman, 1999).

4.3 Syntactic parsing

Parsing is the problem of mapping a sentence to its associated syntactic tree struc-
ture (Collins, 1999). In this thesis we are interested in performing constituency
parsing. The main challenge of parsers is to resolve syntactic ambiguity. Syntac-
tic ambiguity can lead to an exponential number of parses per sentence. Since we
frequently need to work with sentences of more than 30 words in NLP (the average
sentence length in a corpus that we used in this thesis is more than 20 words), this
is a important issue.

In this section we discuss statistical parsing, parsing algorithms, and different
parameterizations of probabilistic context-free grammar parsing models.

4.3.1 Statistical parsing

Early approaches to parsing were mainly rule-based, using large hand-crafted gram-
mars that resolve ambiguity with selectional restrictions on words (Collins, 1999).
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However, these approaches did not scale well from restricted domain text to wide-
coverage domains such as newspaper articles. It was also observed that many struc-
tural preferences that help resolve ambiguity are better encoded as soft preferences
than hard constraints.

Consequently, researchers began to investigate machine learning approaches to
parsing. The machine learning problem is to induce a parsing function from a training
set of sentence-tree pairs. A test set of sentence-tree pairs is used to evaluate the
model’s accuracy. Model performance is usually evaluated with precision, recall and
F1 scores on phrase structure labels. Parsing is usually formulated as a probabilistic
model. In this case the training problem is to estimate model parameter values.
Statistical parsing models are trained with treebanks. The WSJ PTB is widely used
to train English parsers.

Let ∆ be an alphabet, Σ a ranked alphabet and W the probability semiring.
Suppose s ∈ ∆∗ and t ∈ TΣ(∆), such that s is the yield of t. A statistical parsing
model is a mapping score : TΣ(∆) × ∆∗ → W , where the domain is restricted to
pairs (t, s), where s is the yield of t. The most likely tree is then defined as

Tbest(s) = arg max
t∈TΣ(∆)

score(t, s). (4.3.1)

The probability score(t, s) can be either a joint probability P (t, s) or a conditional
probability P (t|s). Usually a joint probability is used, as the model can then just
assign a probability to the derivation of parse tree t. A parser is an algorithm to
search for Tbest for any input sentence s.

Note that, from the definition of conditional probability,

P (t|s) =
P (t, s)

P (s)
. (4.3.2)

P (s) is constant for a given sentence s. Therefore, in the parsing search problem,

Tbest(s) = arg max
t

P (t|s) = arg max
t

P (t, s). (4.3.3)

For the model to have a tractable number of parameters, t is decomposed into a
number of events e1, e2, . . . , en, that each have a weight score(ei). The model score
is then a product of terms

score(t, s) =
∏

i=1,...,n

score(ei). (4.3.4)

An event is usually associated with a tree fragment. The choice of parameter-
ization of the model is then the way that the tree is decomposed into fragments
with which parameters are associated. As we discuss later in this section, events are
commonly associated with probabilistic CFG derivations.

The first important criterion in the choice of parameterization is the discrimi-
native power of the model. Events should include contextual information to help
distinguish between good and bad parse trees. The second criterion is the compact-
ness of the model. The resulting model should have as few parameters as possible,
as the amount of training data necessary to estimate the parameters accurately is
proportional to the number of model parameters. The trade-off between these two
criteria is critical for good parsing models.
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4.3.2 PCFGs

Early statistical approaches to parsing investigated the use of probabilistic context-
free grammars (PCFGs). A PCFG is a CFG over the probability semiring. The
probability that a PCFG assigns to a parse tree t is the weight of the derivation d
of which t is the derivation tree.

CFG productions can be read directly from a parse tree, as the parse tree can
be seen as a CFG derivation tree; from every node and its child or children a CFG
production can be read off. Consequently, a treebank can implicitly constitute a CFG
of a language. As a simple parsing model parameterization, let an event represent
the application of a CFG production p with weight P (p|LHS(p)). The model score
for a derivation d = (p1, . . . , pn) is then

P (d) =

n∏
i=1

P (pi|LHS(pi)). (4.3.5)

Let f(p) be the count of production p in the treebank derivations. The rule
probabilities are computed by maximum likelihood estimation as

score(p) = P (p|LHS(p)) =
f(p)

Σp′∈P :LHS(p′)=LHS(p)f(p′)
. (4.3.6)

However, this parameterization does not result in a good parsing model. There
are several reasons for this: Firstly, PTB trees tend to be flat, i.e. nodes often have
many children. Therefore, a CFG read off directly from a treebank will have many
low frequency productions with large right hand sides, for which model parameters
cannot be estimated accurately. Secondly, the model is not sensitive to lexical infor-
mation. All lexical productions have the form A → w, where A is a POS tag and
w is a word. The model assumes that, in a parse tree, the tree structure above A
is conditionally independent of w given A. Thirdly, CFGs do not adequately model
structural preferences in larger tree fragments.

4.3.3 Improved PCFGs

One parameterization developed to address the shortcomings of PCFGs, is lexicalized
PCFGs. In a lexicalized PCFG derivation tree, each node is annotated with the head
word and POS tag of the phrase under it. Instead of generating all the children of a
node with one CFG production, the child nodes are generated one by one. The head
child (the node with the same head word as the parent) is generated first. Then child
nodes to the left of the head child are generated one by one, and then the nodes to
the right of the head child. The probability of a node is conditioned on its parent
and sibling nodes generated before it. We do not give further details, as we do not
use lexicalized parsers in our models. The best performing lexicalized parsers include
those of Collins (1999) and Charniak and Johnson (2005).

Another strategy to address the deficiencies of standard PCFGs is to split non-
terminals in order to break down false independence assumptions. Nonterminals
are annotated with additional information to improve the model parameterization.
However, these grammars are fundamentally different from lexicalized grammars in
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that their annotations do not include open class words. A systematic approach to
finding linguistically motivated splits is presented by Klein and Manning (2003).
This approach is implemented in the widely-used Stanford parser.

A fundamental idea of this approach is the vertical and horizontal Markovization
of productions. To perform vertical Markovization, a node is annotated with its
v preceding ancestors. To perform horizontal Markovization, the right hand side
of a production is decomposed in a similar manner to lexicalized grammars. The
generation of a node is conditioned on the history of the h previously generated
nodes (head node and left or right dependents). A default treebank PCFG has v = 1
and h =∞, giving a parsing F1 score of 72.6%. Using v = 3 and h ≤ 2, this can be
improved to 79.7%.

We mention some of the linguistically motivated splits performed to further im-
prove parsing accuracy. Part-of-speech nodes are subcategorized to capture linguis-
tic features useful to parsing that are not adequately expressed by the default POS
tagset. It is beneficial to mark nonterminals that have only one child, as such pro-
ductions are otherwise often applied in incorrect contexts. Annotating a node with
its head POS tag is also beneficial. Including these and some other improvements,
Klein and Manning (2003) obtain a F1 score of 87.0%.

This manual grammar construction approach is improved further by automati-
cally splitting and re-merging nonterminals to maximize the likelihood of a treebank.
This approach is followed by Petrov et al. (2006), and is implemented in the Berkeley
parser. This parser obtains a F1 score of 90%, which is on par with the performance
of the lexicalized Charniak and Johnson (2005) parser, while having much fewer pa-
rameters. The method is able to automatically recover many of the linguistically
motivated splits described above.

A challenge of this parsing model is that it is intractable to perform exact infer-
ence with the resulting grammar, as to do so the algorithm has to sum over all the
possible subcategorizations (latent annotations) for each node. One approximation
is to find the derivation with the highest probability. Petrov and Klein (2007) present
more sophisticated inference algorithms.

4.3.4 Parsing algorithms

Two general parsing strategies are top-down and bottom-up parsing (Jurafsky and
Martin, 2009, chap. 13). A top-down parser searches for valid parses by building the
tree from the root downwards to the leaves. Whenever a leaf node is reached, parses
that are not able to match the words in the sentence are discarded. A bottom-up
parser starts with the input words as tree leaves and builds trees upwards by applying
grammar rules. A parse is successful if the nonterminal that covers the whole input
sentence is the initial nonterminal of the grammar.

Neither top-down nor bottom-up parsing algorithms are able to search efficiently
in the presence of ambiguity. The solution to efficient parsing lies in using dynamic
programming. Tables are used to store subtrees for each constituent as they are
discovered. Consequently subtrees do not have to be re-parsed every time they are
attached to different nodes. The most widely used dynamic programming parsing
algorithms are the Cocke-Kasami-Younger (CKY) algorithm and the Earley algo-
rithm. Both these algorithms can parse sentences in O(Gn3) time, where n is the
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sentence length and G is a constant representing the size of the CFG (the number
of rules, terminals and nonterminals).

The CKY algorithm performs a bottom-up search using dynamic programming.
CKY parsing requires the CFG to be in CNF in order to parse in cubic time. The
algorithm can be modified to also handle rules of the form A → B, where A and
B are nonterminals, without additional complexity, but crucially no rule RHS may
have more than 2 nonterminals. CKY parsing for a sentence of length n is usually
represented by the upper-triangular part of a (n+ 1)× (n+ 1) table. Each (i, j) cell
contains a set of nonterminals that spans all the terminals between positions i and j
in the input. As each nonterminal in the grammar has exactly two children, its span
can be split into two, divided at position k. The matching first child subconstituent
(i, k) will be in a cell to the left of (i, j) and the second child subconstituent (k, j)
will be in a cell below (i, j). Parsing is performed by filling in the table in a bottom-
up fashion. The cell (0, n) represents the entire input. The insight here that makes
dynamic programming possible is that for each nonterminal in a cell we only need
to keep the highest-scoring entry, as any other rule at that point is guaranteed to
be suboptimal. The highest scoring parse can be found from the initial nonterminal
entry in the (0, n) cell by following pointers between the cells. The CKY algorithm
is the most common parsing algorithm used by statistical parsers.

The Earley algorithm performs a top-down search using dynamic programming.
A single left-to-right pass fills a chart with (n + 1) entries. For each terminal posi-
tion, the chart contains a list of partial parse trees that have been generated so far.
Another parsing strategy, that generalizes both CKY and Earley parsing, is chart
parsing. Further details can be found in Jurafsky and Martin (2009, chap. 13).

4.4 Finite-state transducers

As probabilistic models, FSTs are closely related to (discrete) HMMs, and inherit
some HMM algorithms.

4.4.1 Representation

A FSA is used here to represent a probability distribution over strings. A FST
represents either a joint distribution over input and output strings, or a conditional
distribution over the output strings given the input strings. In both cases, the stan-
dard way to parameterize the distribution is by letting transition weights represent
locally normalized conditional probabilities.

In the joint case, a transition weight of a FST represents the conditional proba-
bility

µ(ai, bi)qi−1,qi = P (ai, bi, qi|qi−1), (4.4.1)

while in the case of a conditional distribution

µ(ai, bi)qi−1,qi = P (bi, qi|ai, qi−1). (4.4.2)

Similarly, for a FSA,
µ(ai)qi−1,qi = P (ai, qi|qi−1). (4.4.3)
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In all of these cases, the initial weight function λ is defined as λ(q) = P (q), and
the final weight function ρ as ρ(q) = 1, for all states q ∈ Q.

4.4.2 Inference

The weights of all paths through a FST can be computed efficiently using an instance
of the forward-backward dynamic programming algorithm (Rabiner and Juang, 1986).
At each state q, the forward weight is the sum over all paths that lead to q (excluding
the final weight), and the backward weight is the sum over all partial paths from q
(excluding the initial weight). The forward and backward weights can be computed
efficiently using dynamic programming. The product of the forward and backward
weights at state q is equal to the sum of weights over all the paths that pass through
q. A slightly more general problem is finding the sum over all paths between any two
states. This is computed using an instance of the Floyd-Warshall algorithm (Mohri,
2009).

Application refers to the process of transforming some input by a transducer (May,
2010, chap. 4). Inference in transducers is usually done through application. The
application can be either forward, when we are given an input string (or more gen-
erally, an input FSA) and we want to know how the transducer transforms it, or
backward, when an output string is given and we want to find input strings that
cause the transducer to produce this output. The result of application is usually
represented as a FSA.

Concretely, the strategy to perform forward application of a string s to a FST T
is as follows: Firstly, s is embedded in a FSA I. Then the composition C = I � T
is computed. Finally the right projection of C, that represent the result of the
application, is found. A similar procedure is followed for backward application. This
method of application is referred to as embed-compose-project.

Application can be extended to a cascade of transducers. There are several
strategies to do this (May, 2010, chap 4.). We briefly describe the bucket brigade
method. Suppose that I is the embedded input FSA, to be applied forwardly to the
cascade T1, T2, . . . , Tn. I is firstly composed with T1: C1 = I�T1. The compositions
of the rest of the transducers are then computed iteratively as

Ci = Ci−1 � Ti, for i = 2, . . . , n.

Finally, the right projection of Cn gives the result of the application.
Suppose that FSA A is the result of some application. The ultimate goal of

inference is usually to compute the highest-probability output string or the k-best
output strings. Suppose that the weights of A are negative log probabilities, and
we want to find the lowest-scoring path (i.e., the path with the highest probability).
Then we can apply the forward-backward algorithm over the tropical semiring. The
FSA weight computed by the forward-backward algorithm will be the weight of the
lowest-scoring path, known as the Viterbi path. If backpointers are used by the
forward-backward algorithm, this path can be found easily. In general there may be
multiple paths through A with the same label. One way to overcome this problem is
to firstly determinize the transducer (Mohri, 2009). We do not perform determiniza-
tion in this thesis, so we do not discuss it further here. In this thesis we use the
label of the highest-probability path as an approximation of the highest-probability
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Figure 4.1: Composition of the embedded FSA and the error model FST.
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Figure 4.2: Application FSA after projection and language model composition.

string. An alternative is to compute the weights of the k highest probability paths,
add the weights of paths with the same label, and find the highest-probability string
from that list.

Example 4.4.1 Let E be the embedded automaton from Figure 3.4, R the error
FST from Figure 3.3 and L the language model transducers from Figure 3.2. Let
i be an incorrect sentence and c a correct sentence. R represents the probability
distribution P (i|c) and L the distribution P (c). The cascade of these two trans-
ducers represents a noisy channel error correction model. Suppose that inference is
performed with bucket brigade application. The composition T1 = E �R is given
in Figure 4.1. Then T2 = T1 � L is computed, and T2 is right projected to FSA



CHAPTER 4. PROBABILISTIC MODELS 57

A. A is given in Figure 4.2. The Viterbi path through A is then computed. The
weight of this path is 14.401 and the label is the man helps children. Therefore the
subject-verb agreement error is corrected, and there is an unnecessary article dele-
tion. Other possible outputs include the man helps the children, with weight 15.951,
and the original sentence with weight 16.041.

4.4.3 Training

Suppose that we are given a FST M and a training set {(x1, y1), . . . , (xn, yn)} of
string pairs. Let us first consider the case where for each possible input-output pair
there is only one path through the transducer. Then the training data is complete,
and the maximum likelihood estimates can be computed directly. Suppose that
f(a, b, p, q) is the number of times that the sequence p, (a, b), q occurs in the paths
of the training examples. For a joint probability distribution the transition weight
µ(a, b)p,q is estimated as

P (a, b, q|p) =
f(a, b, p, q)

Σp′f(a, b, p′, q)
. (4.4.4)

The transducer can also represent the conditional probability of the input given the
output (we parameterize our error model FSTs in this way). In this case, µ(a, b)p,q
is estimated as

P (a, q|b, p) =
f(a, b, p, q)

Σb′,p′f(a, b′, p′, q)
. (4.4.5)

In the general case, where multiple paths have the same labels, the EM algorithm
can be used to estimate the weights of M . For each pair (xi, yi), xi and yi are
embedded in FSA Ii and Oi, respectively. The composite transducerDi = Ii�M�Oi
is a derivation FST for the string pair. Each path in Di represents a derivation
of (ai, bi) in M . The forward-backward algorithm is then run on Di to compute
fractional counts of each transition. This is the E-step of the algorithm. Multiple
transitions in Di may correspond to the same transition inM . The fractional counts
of transition weights are summed over all training examples. The counts are then
normalized as transitions of M , which is the M-step. This process is iterated, the
weights of M being updated after each iteration.

FST inference and training algorithms are implemented in OpenFST (Allauzen
et al., 2007) and Carmel1. OpenFST provides a more extensive set of inference
algorithms, but EM training is implemented only in Carmel.

Eisner (2002) presents a training algorithm for a log-linear FST parameteriza-
tion with global normalization. Chiang et al. (2010) propose Bayesian inference
algorithms for FST models. For some tasks these algorithms give better model pa-
rameterizations. However, MLE and the EM algorithm remain good and efficient
ways to train FSTs.

4.5 Regular tree grammars

A probabilistic RTG represents a probability distribution over trees. The weight of
a production r : A→ u is the conditional probability P (u|A).

1http://www.isi.edu/licensed-sw/carmel

http://www.isi.edu/licensed-sw/carmel
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As there may be multiple paths in a FST with the same label, there may be
multiple derivations in a RTG for the same tree. The sum of the weights of tree
derivations can be computed efficiently using the inside-outside algorithm, a gener-
alization of the forward-backward FST algorithm (Graehl et al., 2008).

Given a RTG G = (Σ, N, P, π, S) over a semiring W , let n, n′,m ∈ N and
u ∈ TΣ(N), p ∈ P . The inside weight βG for a nonterminal n ∈ N is the sum of the
weights of all trees that can be derived from it, defined as

βG(n) = ⊕p:n→uπ(p)⊗l∈leafpos(u) βG(label(l)). (4.5.1)

The inside weights are also defined for u ∈ TΣ(N), the right hand side of a
production p : n→ u, p ∈ P , as

βG(u) =

{
1̄ if leafpos(u) = ∅,
⊗l∈leafpos(u)βG(label(l)) otherwise. (4.5.2)

βG can be evaluated over any complete semiring. In practice, RTGs are usually
formulated without chain rules to avoid possible difficulties with computing infinite
summations.

The outside weight αG of a nonterminal n ∈ N is the sum of all derivations using
n, excluding the weight of the subtree under n, defined as

αG(n) =

{
1 if n = S,
⊕p:m→u,l∈leafpos(u)π(p)⊗ αG(m)⊗l′∈leafpos(u)−{l} βG(label(l′)) otherwise.

(4.5.3)
The sum of the weights of all trees generated by G is given by βG(S). Given

the inside and outside weights, the sum of the weights of all trees using a particular
production p : n→ u is

γG(p) = αG(n)⊗ π(p)⊗ βG(u). (4.5.4)

We do not discuss the training of RTGs, as we do not train RTGs directly in
this thesis. However, in the next section we show how RTGs and the inside-outside
algorithm are used to performing EM training of tree transducers. When we per-
form inference with tree transducers, the inside-outside algorithm is used to find the
highest-scoring derivations in a RTG.

4.6 Tree transducers

We now discuss how weighted tree transducers and weighted tree-to-string transduc-
ers are used as probabilistic models.

4.6.1 Representation

As in the case of probabilistic FST models, tree and tree-to-string transducers can
represent joint or conditional probability distributions. Suppose t is an input tree, s is
an output tree or string, and r is a tree transducer rule of the form q(σ(t1, . . . , tk))→
u. Then the root of r is defined as root(r) = q(σ) if one-symbol look-ahead is
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used, and root(r) = q otherwise. Suppose that a tree transducer represents a joint
distribution P (t, s). Then the weight of r is

π(r) = P (r|root(r)). (4.6.1)

In the case of a conditional distribution P (s|t), the weight of r is

π(r) = P (r|LHS(r)), (4.6.2)

where LHS(r) denotes the entire left hand side of r.

4.6.2 Inference

Inference with tree transducers is performed with application, as in the case of FSTs.
However, tree transducer application is usually performed with custom algorithms for
specific transducer classes. The generic approach used for FSTs cannot be used for
most tree transducer classes, due to a lack of closure under composition. Application
can only be performed with a limited number of transducer classes. The class of
LNTs is closed under composition, but the class of xLNTs is not (Maletti et al.,
2009). Almost none of the classes that perform copying or deletion are closed under
composition.

A RTG G = (Σ, N, P, π, S) over a semiring W G is embedded in a LNT E if
E assigns the weight wtG(t) to the tree pair (t, t) for every tree t ∈ TΣ, and 0
to all other tree pairs. May (2010, chap. 4) gives a custom forward application
algorithm for applying a RTG to a xLNT. Though the class of xLNTs is not closed
under composition, embedded RTGs form a more restricted class, and the application
RTG can be computed. For backward application of a RTG to a xLNT, the embed-
compose-project approach can be used. If M is a xLNT and E is a embedded LNT,
then the composition C = M � E can be computed. C is then right projected to
a RTG A. A modified bucket brigade approach for application to tree transducer
cascades has also been proposed (May, 2010, chap. 4).

Tree-to-string transducers are typically applied with backward application of a
string s to a xLNTS M . Transforming a string to a tree can be seen as a parsing
problem, and therefore parsing algorithms are used to perform this application. An
algorithm based on Earley parsing is proposed by May (2010, chap. 4). A CKY-based
algorithm for this application has also been used (Galley et al., 2006).

When we work with tree transducers in NLP applications, exact inference is
usually intractable, since the search space is too large to perform an exact search
given time and memory constraints. Therefore the search space is usually pruned
heuristically. We discuss this more concretely in Section 6.3.2.

4.6.3 Training

We now discuss the training problem for probabilistic extended tree and tree-to-
string transducers, given a set of training pairs. We assume here that the transducer
rules are given, and that the goal is to estimate the rule weights. We discuss methods
to extract rules from the training data in Section 6.1.

Suppose we have a xLNT M = (Σ,∆, Q,R, π,Qd) with Qd = {S} over the
probability semiring, and a set {(t1, s1), . . . , (tN , sN )} of tree training pairs. Suppose
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t is an input tree and s is an output tree. Let us first consider the case where only
one derivation from each training pair is considered as training data. Let f(r) denote
the number of occurrences of rule r in the training derivations.

For a joint distribution P (t, s) the MLE of the rule weight associated with r is

π(r) = P (r|root(r)) =
f(r)

Σr′:root(r′)=root(r)f(r′)
. (4.6.3)

Let us now consider the general case, where the EM algorithm is used to perform
training. Every derivation of M can be represented with a derivation tree over R
(the tree nodes are labeled with rules). For a tree pair (ti, si), the set of derivation
trees for M , and the associated derivation weights, can be generated by a derivation
RTG Gi. Each production in Gi has the form q → r(q1, . . . , qk), where symbol r
denotes a rule r ∈ R with k variables, and each state label q, q1, . . . , qk has the form
p× pos(ti)× pos(si), where p ∈ Q. The start state S of Gi corresponds to the start
state of M .

An algorithm to construct a derivation grammar Gi is given by Graehl et al.
(2008). In this algorithm, in the worst case each of the rules in R has to be considered
for each of the tuples (q, pt, ps) ∈ Q, pos(ti), pos(si). The time and space complexity
are then both O(|Q| · |ti| · |si| · |R|) or O(Kn2), where n is the total size of the input
and output trees, and K is the grammar constant, representing the size of the rules
and the states in M .

If the transducer has chain rules a corresponding derivation RTGmay have cycles,
leading to an infinite number of derivation trees. To avoid this additional complexity,
chain rules are removed before the derivation grammars are constructed.

Similarly, derivation trees can also be constructed when M is a xLNTS and
{(t1, s1), . . . , (tN , sN )} is a set of tree-string training pairs. However, computing
xLNTS derivations is more complex than computing xLNT derivations. Input tree
nodes are matched with arbitrary output string spans, instead of output subtrees.
Suppose that no transducer rules have more than two variables. For an output
string of length m there are O(m2) spans, and each binary production over a span
has O(m) ways to divide the span in two. These spans and span divisions should be
considered for each of the n input tree nodes, the transducer rules and the different
states. Let K again be the grammar constant. Then the time and space complexity
of constructing a xLNTS derivation grammar is O(Gnm3).

An instance of the EM algorithm has been defined to train tree transducers
(Graehl et al., 2008). The model parameters θ are represented by the rule weight
function π : R → W . For each pair in the training data D a derivation grammar is
constructed only once. For each iteration j of the EM algorithm the weights of the
derivation grammars are updated to the current parameter values θj . A derivation
grammar production with right hand side tree root labeled r is assigned weight π(r).

The expected complete data log likelihood is

Q(θ, θj−1) =E[logP (D|θ)|θj−1] (4.6.4)

=ΣN
i=1Σr∈RfGi

(r) log π(r) (4.6.5)

=Σr∈R log π(r)ΣN
i=1fGi

(r), (4.6.6)
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where fg(r) is the expected number of times that rule r is used in derivation trees
generated by derivation RTG g, when g is parameterized by θj−1. To estimate
fg(r), the number of times that r is used in each derivation tree is weighted by the
derivation tree weight, and the sum of these weights is normalized over the weights
of all the derivation trees. Therefore, we have

fg(r) =

∑
d∈TR nd(r)wtg(d)∑

d∈TR wtg(d)
, (4.6.7)

where nd(r) is the number of times that r occurs in derivation tree d. We can
compute this efficiently with the inside-outside weights of g:

fg(r) =

∑
p:a→u,root(u)=r γg(p)

βg(S)
. (4.6.8)

In the E-step of the EM algorithm, the expected fractional counts are computed
for each derivation grammar. The expected count of each rule r is then obtained by
summing over all the training examples:

f(r) =
N∑
i=1

fGi
(r). (4.6.9)

In the M-step the MLE of the rule weights are updated, for joint probability
distributions, using equation (4.6.3).

Tiburon (May and Knight, 2006) implements tree transducer algorithms, includ-
ing EM training. We use Tiburon in performing experiments with our tree transducer
models.

Recently, Bayesian methods for tree transducer training have also been devel-
oped (Jones et al., 2012). Another alternative is a training method based on large
margin training for structural SVMs (Cohn and Lapata, 2007).

4.7 Conclusion

In this chapter methods and applications of probabilistic models were presented.
Section 4.1 introduced probabilistic modelling. Language models were presented in
Section 4.2, and parsing in Section 4.3. We discussed probabilistic modelling with
FSTs in Section 4.4. Section 4.5 discussed probabilistic RTGs, and specifically the
computation of inside-outside weights. Finally, probabilistic modelling with tree
transducers, including the EM training algorithm, was discussed in Section 4.6.



Chapter 5

Experimental Setup

In this chapter we present the experimental setup used in developing and testing our
probabilistic tree transducer models for grammatical error correction. We discuss
the various steps in preprocessing and parsing the learner corpora training data.
We make use of standard, publicly available NLP tools to perform many of the
processing steps. The processing pipeline and the steps that we perform ourselves
are implemented in Python. We briefly discuss additional training resources, as well
as the n-gram language model used. Finally we present a baseline FST model which
include some of the model components used in the transducer models in Chapter 6.

5.1 Training and testing data

The two corpora used to train and test our models are NUCLE and FCE, described
in Section 2.2.1. Details of the formats of these two corpora are given in Appendix
B. The preprocessing steps we describe in the following sections are implemented
separately for the data formats of the two corpora, though the same steps are fol-
lowed.

Both corpora have separate training and test sets. We divide the training sets of
each corpus into 80% training data, 10% validation data and 10% development data.
Splitting is performed by random selection at essay level. The training sets are used
to train the transducer error correction models, while hyperparameters such as the
weight of the language model are tuned on the validation sets to optimize the system
performance on the evaluation metric used directly. The development set is used to
compare the performance of different modelling choices, while the test sets are used
to perform the final evaluation of our models.

For the NUCLE test data there are two sets of annotations. The first is the
original version annotated by the official annotator. The second is a revised version,
released after the CoNLL-2013 shared task. After the initial results for the shared
task were released, participating teams were given the opportunity to suggest alterna-
tive correction annotations, based on the output of their systems. These alternative
answers were then judged by the official annotator, and the revised version, that al-
low multiple possible corrections, was released. The idea is that the evaluation scores
on the revised annotations are more accurate, as some of the corrections suggested
by a system may be correct, although not originally suggested by the annotator.

62
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5.2 Preprocessing

The learner corpora data consist of essays, which are subdivided into paragraphs.
For each paragraph the original text is given, as well as error annotations. An error
annotation usually consists of the position of the word or phrase in the original text
that should be replaced, the type of error, and the suggested correction. We extract
the following from a corpus, for each sentence in the original text:

- The tokenized original (possibly incorrect) sentence. We refer to this as the
incorrect sentence.

- The tokenized correct sentence.

- A word alignment between the tokens of the correct and incorrect sentences.

5.2.1 Tokenization

An important preprocessing step is tokenization. Tokenization is the process of seg-
menting running text into words and sentences (Jurafsky and Martin, 2009, chap. 3).
The tokenization is performed with NLTK (Bird et al., 2009), following the conven-
tions used in the CoNLL-2013 shared task.

The first tokenization step is to split the paragraphs into sentences. Sentence
splitting is based on sentence-terminating punctuation (“.”, “?” and “!”). However, in
some cases periods are ambiguous, as they are also used in abbreviations, for example
“Ms.” or “ex.”. Tokenizers use heuristics or machine learning algorithms to classify
sentence boundaries, using surrounding words and punctuation as features. In our
implementation sentence splitting is performed with NLTK punkt. This tokenizer
uses heuristics that, though not error-free, give good tokenizations.

Note that it is possible that due to punctuation errors there may not be an exact
correspondence between the correct and incorrect sentences. In such cases we follow
the sentence alignment of the incorrect sentence. Therefore it is possible that in some
cases the corresponding correct “sentence” will consist of more than one sentence, or
may not be a complete sentence.

Next, word tokenization is performed on each sentence. The primary goal of
word tokenization (in English) is to separate punctuation from words. There are
slight differences between tokenization conventions of different tokenizers. For ex-
ample, in handling apostrophes, shouldn’t can be tokenized as either should n’t or
shouldn ’t . During tokenization, quotation marks may also be normalized (there
are different textual representations for open and closing quotation marks). As the
phrase structure in sentence parses are usually indicated with nested parenthesis,
during tokenization parenthesis in the text are replaced by other symbols. For ex-
ample, in PTB trees ( and ) are replaced with -LRB- and -RRB-, respectively, the
acronyms denoting Left or Right Curly Bracket. Our implementation uses NLTK
word tokenize. This tokenizer uses relatively simple heuristics. It does make some
mistakes, but not enough to affect the performance of the system significantly. As
an example, in some contexts quotation marks are not split from the words they
precede or follow.
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A large number of URLs occur in the NUCLE training data, as citations are
included in some of the essays. We replace these with <url> symbols to reduce noise
in the vocabulary.

Several symbols that occur in the text data are used by Tiburon as reserved
symbols. These include #, @, % and >. Therefore, these symbols should be replaced
by placeholder symbols such as -HSH-, -AT-, -PRC- and -GT-.

The last sentence preprocessing step is the normalization of capitalization. We
convert all words to lowercase to reduce data sparsity in the constructed models. We
store versions of the sentences with the original and the lowercased capitalization, so
that the original capitalization can be restored on the system output after decoding.
An alternative way to normalize capitalization is to use truecasing. In this method,
the case of the first word of each sentence (which is always capitalized in English)
is restored to its most frequent capitalization. We did perform some experiments
using truecasing, but found that it is inadequate to eliminate the occurrence of both
capitalized and uncapitalized versions of some words in the text.

Example 5.2.1 The tokenization and lowercasing of a sentence are given below.
(1) is the original sentence, (2) the word-tokenized sentence (where all tokens are
separated by spaces) and (3) the lowercased form of the tokenized sentence.

(1) Most Chinese patents are “Appearance Patents”, not “Innovation Patents”.

(2) Most Chinese patents are " Appearance Patents " , not " Innovation Patents " .

(3) most chinese patents are " appearance patents " , not " innovation patents " .

5.2.2 Applying corrections

As described in Section 2.2.1, the learner corpora contain annotations for many kinds
of errors. In our experiments we construct models to correct only subsets of these
errors.

For the FCE corpus we use a set of 9 error types classified according to word
classes: Pronoun, conjunction, determiner, adjective, noun, quantifier, preposition,
verb and adverb errors. We exclude errors such as spelling, punctuation, word order,
idiom and inappropriate register errors.

For the NUCLE corpus we consider the set of five error types used in the CoNLL-
2013 shared task: Article or determiner, preposition, noun number, verb form, and
subject-verb agreement errors.

For both corpora we construct models to correct these error types. To construct
the correct version of the training sentences, we only apply corrections for the error
types that we want to correct in a specific model. Spelling and punctuation errors
are corrected on the correct and incorrect sides of the training data to reduce noise
that these errors may introduce into the model. Annotated errors of other error
types are left uncorrected.

An alternative approach is to apply the corrections of the excluded error types
to the correct and incorrect versions of the sentences. However, we decided against
this in order to keep the training data realistically close to the test data, which also
contain these other errors.



CHAPTER 5. EXPERIMENTAL SETUP 65

A disadvantage of performing the correction task for only a subset of error types
is that multiple error annotations in a sentence may interact with each other, and the
correction task may only involve performing some of these corrections. As a result
some of the gold standard edits will not actually make a sentence more grammatical,
as other edits should have been performed as well to make them sensible.

Example 5.2.2 Below we give an incorrect sentence, its error annotations, and the
corresponding correct sentence. All the error annotations except the collocation error
are applied. This example also shows the disadvantage of correcting only some of
the annotated errors, as the phrase amounts in the billions is still incorrect.

Incorrect sentence: In countries like China and India, their population amounts
to billions.

- Determiner error: their population → the population

- Collocation error: amounts → numbers

- Preposition error: to → in

- Determiner error: billions → the billions

Correct sentence: In countries like China and India, the population amounts
in the billions.

5.2.3 Word alignment

The methods that we use to extract transitions or rules for our transducer models
are based on word alignments. The concept of word alignments was originally devel-
oped to align words in sentence pairs used as training data for statistical machine
translation models (Brown et al., 1993). We consider alignments between words in
the correct and incorrect version of sentences. The word alignment a of a sentence
pair (s, t) is a set of pairs such that (i, j) ∈ a if and only if the ith word in s is aligned
with the jth word in t. In contrast to SMT alignment, here most of the words will
be aligned to identical words. The edits to transform the one sentence to the other
are given by the training data, so we use that to extract the alignments.

In our method, the first step is to align all words that do not occur in any edits
one-to-one between the correct and incorrect sentences. Then each edit annotation’s
incorrect and correct phrases are considered. Words that occur in both the correct
and incorrect edit phrases are aligned one-to-one. This is done with a simple left-
to-right search through the phrases, with the restriction that alignments may not
overlap. Adding these alignments may split an edit phrase into pairs of subphrases
without alignments, which may be empty on either side. If such a subphrase is
empty on one side, then the words on the other side are left unaligned. But if the
subphrases are non-empty on both sides, then the words on the incorrect side are all
aligned to each of the words on the correct side of the subphrase. There are relatively
few cases where phrases with multiple words on both the correct and incorrect sides
are aligned in this way. A further refinement to this alignment procedure would be
to align words with the same lexeme or POS tag.
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In countries like China and India , the population amounts in the billions .

In countries like China and India , their population amounts to billions .

Figure 5.1: Word alignment between a correct sentence (top) and an incorrect sen-
tence (bottom).

Example 5.2.3 The word alignment for Example 5.2.2 is shown visually in Figure
5.1. No edits are made to the first part of the sentence In countries like China and
India. For the edit their population → the population, the word population is aligned
firstly, as it appears on both sides. Next the words the and their are aligned. The
prepositions in the edit to → in are aligned. For the final edit, billions on both sides
are aligned, and the is left unaligned.

5.3 Parsing

In order to train a syntax-based model for grammar correction, the sentences on the
correct side of the training data are parsed. Initially, we experimented with both
the Stanford parser (Klein and Manning, 2003) and the Berkeley parser (Petrov
et al., 2006), but we settled on the Berkeley parser, since it is the state-of-the-art
unlexicalized parser. Given that the correct side of our training data will still contain
errors, it is unlikely that lexicalized parsing will be more accurate.

Two versions of the sentence parses are obtained: The first set consist of the
standard parse trees, using the default options of the Berkeley parser. The second is
the set of left-binarized parse trees obtained under Viterbi decoding, where the best
parse is approximated as the parse tree of the highest-scoring derivation. Figure 5.2
shows an example of a standard parse tree (a) and its left-binarized version (b). The
file format of parse trees is described in Appendix B.

5.4 Additional resources

In addition to the learner corpora training data, we use some additional linguistic
resources to improve the coverage of our transducer transitions or rules.

The first additional source is a vocabulary. The model vocabulary is usually
the union of the language model vocabulary and the vocabulary of the words on
the correct side of the training data. We add transitions or rules to our transducer
models for all the words in the language model vocabulary which do not occur in the
training data. Such rules perform identity rewrites of the words under consideration.
For syntax-based rules, the POS tag of a word is also required. We use the NLTK
POS tagger to obtain the one or two most likely POS tags for each of the vocabulary
words.

Secondly, we use the NLTK interface to WordNet (Miller, 1995) to find pairs
of singular and plural nouns and groups of verbs that have the same base lexeme.
All verbs and non-proper nouns that occur in the language model vocabulary are
grouped like this. These groups are used to construct additional substitution rules



CHAPTER 5. EXPERIMENTAL SETUP 67

PP

NP

NP

NNS

swamps

CC

and

NP

NNS

deserts

IN

as

JJ

such

(a)

PP

NP

NP

NNS

swamps

@NP

CC

and

NP

NNS

deserts

@PP

IN

as

JJ

such

(b)

Figure 5.2: A parse tree and its left-binarized equivalent.

between singular and plural nouns (in both directions) and between verbs with the
same base forms (there are 6 verb forms in the PTB POS tagset that are considered).
The motivation behind extracting these rules is that they represent some of the most
common grammar errors involving open class words. Errors for open class words are
more sparse in the training data than closed class errors such as article or determiner
errors, as there are many more open class words than closed class words. Subject-
verb agreement errors are also concerned with the verb form in the sentence, so
added verb form rules will also be applicable to these errors.

5.5 Language model

We train the n-gram language model used in our models on a large corpus of text
extracted from the English Wikipedia. The April 2013 Wikipedia XML dump1

is used. This XML document is parsed with the gwtwiki2 Wikipedia parser. All
sentences consisting of 6 or more words are extracted. These sentences are tokenized

1http://dumps.wikimedia.org/enwiki/20130304/enwiki-20130304-pages-articles-multistream.
xml.bz2

2http://code.google.com/p/gwtwiki/

http://dumps.wikimedia.org/enwiki/20130304/enwiki-20130304-pages-articles-multistream.xml.bz2
http://dumps.wikimedia.org/enwiki/20130304/enwiki-20130304-pages-articles-multistream.xml.bz2
http://code.google.com/p/gwtwiki/
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with NLTK and lowercased. The corpus has about 1 500 million words. A trigram
model is trained using Kneser-Ney smoothing. A 64 000 word vocabulary of the
words that occur with the highest frequencies in the corpus are used. The symbol
<unk> is used to indicate out-of-vocabulary words. The language model is trained
with the widely used SRILM toolkit (Stolcke, 2002).

5.6 Decoding and evaluation

In the decoding problem, we are given some text and the goal is to correct the errors
in that text. The format of blind test data from a learner corpus is similar to that
of the training data, except that the annotations are kept separate. Tokenization is
performed as on the training data. Words that do not appear in the vocabulary of
the model being used are replaced with <unk> symbols. When we decode blind test
data, spelling errors may occur in the given incorrect text. Since spelling correction
is not in the scope of the models we study, incorrectly spelt words are also replaced
by <unk>. In practice we found that spelling errors do not have a significant impact
on the performance of our system. In the NUCLE test data, spelling errors are very
sparse; the proportion of out-of-vocabulary words is 0.03%.

After decoding, some of the preprocessing steps are reversed. The original casing
of words is restored. Words replaced with <unk> symbols are restored. Additional
transformations, such as replaced brackets with special symbols, are reversed. If the
output is presented to an end user, the tokenization should also be undone. However,
to perform automatic evaluation the tokenization is retained.

The M2 scorer is used to perform automatic evaluation on both corpora. The
gold standard is represented by a file containing the original sentences as well as the
edits for each sentence. This file format is described in Appendix B.

5.7 FST error correction model

We now describe a simple FST model for grammatical error correction. Although
some of the SMT-inspired approaches in the literature are more general than this
model, we are not aware of previous results with a FST model such as the one we
describe here. An important criterion in constructing this baseline was that it should
contain as little linguistic analysis as possible, so that we can carefully examine the
effect of the syntactic information that is expressed by our transducer models. An
important advantage of this model is that exact decoding can be performed efficiently
with it, which is not the case for our tree transducer models.

5.7.1 Representation and training

We follow the noisy channel model by formulating a language model FSA and an
error model FST. In our implementation we use the finite-state transducer package
OpenFST (Allauzen et al., 2007). The transitions in a FST are specified by a list
of transitions with weights. All transitions between alphabet symbols that are not
explicitly specified are assumed to have weight 0̄. Weights can be specified over
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different semirings. In our implementation we use the tropical semiring, but in this
section the probability semiring is used to clarify the presentation.

We use the Wikipedia trigram model trained with SRILM as language model.
In order to construct the language model FSA, we use a script from the Transduc-
ersaurus toolkit (Novak et al., 2011) to convert the SRILM language model file to
OpenFST format.

The error model is a single-state FST that transforms incorrect sentence strings
to correct sentence strings. Transitions (with non-zero weights) are extracted directly
from the training data word alignments. If word a on the incorrect side and word
b on the correct side of the training data are aligned in some training example, a
transition labeled with (a, b) is extracted. If a word in the training data is aligned
to multiple other words, transitions for all of these alignments are extracted. For
unaligned words, transitions of the form (ε, b) and (b, ε) are extracted. The number
of times that each transition (a, b) is extracted, its count, is denoted by f(a, b).

In addition to the transitions extracted from the training data, transitions from
extra lexical knowledge sources are also included. For each word w in the language
model vocabulary a transition (w,w) is extracted. The initial count associated with
the extracted transition is 0. Next, transitions are added for noun number and verb
form substitutions. Again, these extracted transitions get a count of 0, as they do
not occur in the training data.

Out-of-vocabulary words should also be handled. For this purpose a transition
labeled (<unk>, <unk>), with weight 1, is added. As the <unk> symbol is included
in the language model vocabulary, this will be handled properly during composition.
We do not allow transitions for which <unk> occurs only on one side, as this will
make restoring the replaced words problematic.

For some extracted transitions, the word on the correct side of the transition
label may not occur in the language model vocabulary. In our model we do not
extract such transitions.

In order to alleviate the zero count problem with extra added transitions that do
not occur in the training data, we perform plus one smoothing. Therefore, for each
word pair (a, b) for which f(a, b) is defined, f(a, b) is updated to f(a, b) + 1.

As the transducer has only one state, transition weights are estimated as

P (a|b) =
f(a, b)∑
a′ f(a′, b)

. (5.7.1)

Note that some training example word alignments do not correspond to exactly
one path through the transducer. Therefore the normalized frequency counts are not
strictly speaking maximum likelihood estimates on the training data, but MLE ap-
proximations. Similar count-based estimates are used in phrase-based SMT (Koehn
et al., 2003).

5.7.2 Decoding

We use the C++ API of OpenFST to perform decoding. The given incorrect sen-
tences are embedded in transducers and stored in a finite-state archive, a compact
representation that OpenFST provides. Words that do not appear in the vocabulary
are replaced with <unk> symbols. After decoding these words are restored.
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We use bucket brigade application to perform the decoding. We found that it is
much more efficient to perform forward application than backward application when
the implementation of composition in OpenFST is used.

In order to decode a sentence, the embedded sentence FSA is composed with the
error FST. The error FST transforms an incorrect sentence i into a correct sentence
c, even though it represents the probability distribution P (i|c). This transducer is
then composed with the language model FSA. This is right projected to obtain the
application FSA A, that represents all the possible corrections. The label of the
highest probability path through A is taken to be the system output, i.e. the pro-
posed correct sentence. There may be multiple paths through A with the same label,
so the highest probability string is approximated by the highest probability path.
However, in case of this model there will usually be only one path that corresponds
to a sensible sequence of edit operations.

5.8 Conclusion

This chapter described several processing steps and model components that we use
in developing grammatical error correction systems. Section 5.1 presented the setup
of training and test data. Section 5.2 discussed the preprocessing steps followed
to construct the training data that we use. Parsing was described in Section 5.3,
while Section 5.4 discussed additional resources used. We discussed language models
and decoding in Sections 5.5 and 5.6, respectively. Finally, a baseline FST error
correction model was presented in Section 5.7.



Chapter 6

Tree Transducer Models

In this chapter we develop novel models for grammatical error correction based on
probabilistic tree-to-string-transducers. We start by describing how syntax-based
transducer rules are extracted from training data, and how additional rules are added.
We consider modelling choices regarding the structure of the rules and restrictions
that may benefit the speed and accuracy of the decoding. Then we discuss the
estimation of transducer weights. The steps followed to perform decoding are also
described.

6.1 Transducer rules

The training data that we use to construct an error correction transducer are tuples
of parsed correct sentences, incorrect sentences and word alignments, obtained as
described in Section 5.2. The first step in the construction of our tree transducer
models is to construct a set of rules. In this section, we describe our approach, and
motivate some of the modelling choices made.

6.1.1 Rule extraction

The main set of rules of our tree-to-string transducer is extracted with the GHKM
rule extraction algorithm (Galley et al., 2004, 2006). This algorithm was developed to
automatically extract linguistically plausible rules for statistical machine translation,
but it can be applied more generally to natural language transformations between
parse trees and strings.

A crucial motivation of this algorithm is the relation between xLNTS derivations
and word alignments. Suppose we are given a training example (π, i, a), where π is
the correct parse tree, i the incorrect sentence and a the word alignment. Suppose
that d = (r1, . . . , rn) is a derivation of the tree-string pair (π, i). Each word in i and
each node in π is generated by exactly one of the rules in d. The alignment a is
consistent with d if and only if for each word pair (v, w) in the alignment, v and w
are generated by the same derivation rule r. The GHKM algorithm finds derivations
for (π, i) that are consistent with a. The rules used in these derivations form the set
of extracted rules.

71
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Figure 6.1: Alignment between a correct parse tree and an incorrect clause.

A training example is represented as a directed graph consisting of π, a node for
each word in i, and directed edges from leaf nodes of π to word nodes of i, for each
word alignment in a. An example of such a graph is shown in Figure 6.1 (all directed
edges are assumed to be going downward). Unaligned words in the incorrect sentence
are not connected to the rest of the graph. A derivation is induced by partitioning
the graph into fragments, such that each fragment corresponds to a transducer rule.
A rule is minimal if the graph fragment it corresponds to cannot be partitioned into
smaller fragments that correspond to valid rules. The goal of GHKM is to extract
rules for an xLNTS derivation of (π, i) that are minimally consistent (minimal and
consistent) with the alignment a.

For each of the nodes in π, we compute a span and a complement span with
respect to the nodes in i. Suppose that the words in i are indexed (the kth word
in each sentence has index k). The span of a node n is the integer subset of indices
between the first and last words in i that are reachable from n. The spans of the
leaves in the tree (the words of the correct sentence) are defined by a, and the spans
of the other nodes are computed bottom-up for each node from the spans of its child
nodes. The complement span of n is the union of the spans of all nodes that are
neither ancestors nor descendants of n. The complement spans are computed top-
down for each node n as the union of the complement span of n’s parent and the spans
of n’s siblings. Note that the indices in a complement span may be discontinuous.

Non-leaf nodes of π whose spans and complement spans do not overlap are called
frontier nodes. From each frontier node n, a rule r is extracted: The left hand side of
r is the concatenation of state q and a subtree rooted at n. The subtree is extracted
by traversing π top-down from n, replacing all frontier nodes reached with variables,
as more rules will be extracted from there. One-symbol look-ahead is added to the
variable leaves. The right hand side is formed by the sequence of nodes in i that
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are spanned by n. For each variable xi on the left hand side, the right hand side
sequence of elements that are spanned by the frontier node corresponding to xi is
replaced by state q.xi. An unaligned word w in i is placed on the right hand side of
the rule of the lowest frontier node in π that spans w. The extracted rules correspond
to exactly one derivation of (π, i).

Composite rules, that result from the composition of two or more minimal rules
(Galley et al., 2006), can also be extracted. Examples of minimal and composite
rules are given in Example 6.1.1 below. Suppose that r1 and r2 are minimal rules
extracted from training example (π, i, a), corresponding to frontier nodes m and n,
respectively. Then r1 and r2 are composable if n is a descendent of m in π, and
if there are no other frontier nodes on the path between m and n. The left hand
side of r2, excluding the state q, is concatenated to the left hand side tree of r1

at the variable xi in r1 associated with the root node of the r2 tree. On the right
hand side of r1, xi is replaced by the right hand side of r2, and the variables indices
are renumbered, if necessary. Although rules can be composed recursively, for our
models that include composite rules, we only extract compositions of two minimal
rules, and only in cases where the composite rule performs a lexical change. These
restrictions limit the number and size of rules, which impact the transducer decoding
time.

Rules are extracted from all examples in the training data. The number of times
each rule r is extracted is denoted by f(r). This will be used to determine the
rule weights. We implemented this algorithm in Python. The linear time algorithm
described by Galley et al. (2004) is implemented, and the run time of our imple-
mentation is comparable to what they reported, at around 10 000 sentence pairs per
minute.

We briefly discuss the kinds of rules that can be extracted with the aim of per-
forming grammatical error correction. All non-lexical rules will be identity rules, with
non-extended left hand sides. All extracted lexical identity rules will have the form
q(POS(w))→ w, where w is a word and POS is a part-of-speech tag. Most of the ex-
tracted transducer rules will have this form, though they do not perform edits. Single-
word, context-independent lexical rewrites have the form q(POS(w)) → v. More
complex types of rewrite rules include constituent phrase rewrites, non-constituent
phrase rewrites and context-sensitive word insertions and deletions, as described in
Section 3.5.1. Although the rule extraction algorithm can extract non-contiguous
phrase rewrites and constituent re-orderings, these occur very rarely in training data
for the kind of grammar errors we are interested in correcting, and therefore we do
not consider these rules in our models.

Minimal rules only take into consideration the minimal amount of context needed
to perform rewrites. In some cases, a larger context is needed to model all words and
syntactic elements that may have an influence on the grammar error represented by
a rewrite rule. Therefore it is beneficial to include composite rules, although these
rules present challenges to efficient training and decoding.

Example 6.1.1 Figure 6.2 shows the rules extracted from the training example in
Figure 6.1. Rules (1) to (13) are minimal rules, while rules (14) to (17) are composite
rules. Rule 14 is the composition of rules 6 and 7, 15 of rules 10 and 11, 16 of rules 10
and 12, and rule 17 of rules 5 and 10. In the example tree, all the constituent (non-
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(1) q.SBAR (x1:WHNP x2:S) → q.x1 q.x2

(2) q.WHNP (x1:WDT) → q.x1

(3) q.WDT (that) → that

(4) q.S (x1:VP) → q.x1

(5) q.VP (x1:@VP x2:PP) → q.x1 q.x2

(6) q.@VP (x1:VBD x2:PRT) → q.x1 q.x2

(7) q.VBD (sprang) → sprung

(8) q.PRT (x1:RP) → q.x1

(9) q.RP (up) → up

(10) q.PP (x1:IN x2:NP) → q.x1 the q.x2

(11) q.IN (across) → across

(12) q.NP (x1:NNP) → q.x1

(13) q.NNP (America) → America

(14) q.@VP (VBD (sprang) x1:PRT) → sprung q.x1

(15) q.PP (IN (across x1:NP)) → across the q.x1

(16) q.PP (x1:IN NP (x2:NNP)) → q.x1 the q.x2

(17) q.VP (x1:@VP PP (x2:IN x3:NP)) → q.x1 q.x2 the q.x3

Figure 6.2: Rules extracted from Figure 6.1.

leaf) nodes are frontier nodes. We see that the composite rules, by taking a larger
context into consideration, include additional syntactic context for the rewrites they
perform.

6.1.2 Additional rules

The vocabulary of our tree transducer models is the union of the vocabulary of our
language model and the vocabulary of the words of the correct sentences in the train-
ing data. In contrast to the FST model, we do allow extracted rules whose correct
side contains a word that is not in the language model vocabulary. Lexical rewrite
rules of the form q.POS(w)→ w are added for all words w in the language model vo-
cabulary. For pairs of nouns and groups of verbs, rules of the form q.POS(v)→ w are
added for a substitution between words v and w, where POS is the POS tag of v. All
added rules that have not already been extracted from the training data are assigned
a rule count of 0. The rule counts of existing rules are left unchanged. For each POS
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tag, a rule q.POS(〈unk〉)→ 〈unk〉 is also added to accept out-of-vocabulary words.

6.1.3 Binarization and rule filtering

The sizes of rules and, more specifically, the number of variables in rules, have a
considerable impact on the decoding time of xTS models. In this section we discuss
a number of strategies to make efficient decoding possible. In practice the grammar
constant for parsing with xTS is larger than that of standard parsing, which makes
xTS parsing several times slower than PCFG parsing.

A rule is binarized if it has at most 2 variables. Binarization is important in
parsing, as algorithms such as CKY require binarized grammars to perform cubic
time parsing. A derivation tree of a tree-string pair in an xTS is binarized if the rules
used in the derivation are binarized. Performing backward application of a string
s to an xTS is equivalent to parsing s to find an xTS derivation tree. If the CKY
algorithm is used to perform decoding, the xTS rules should be binarized. Rules
should also be binarized to perform EM training.

The first solution is to perform synchronous binarization (Zhang et al., 2006).
Firstly, rules are extracted without any restrictions on the number of variables.
Then, as far as possible, rules that have more than two variables are converted to
binary rules. However, not all synchronous grammars are binarizable. Some types
of rules that permute the variable ordering between the rule LHS and RHS cannot
be rewritten into equivalent binarized rules. In our tree transducers we do not use
rules that reorder variables, so in principle all the rules can be binarized. However,
binarization may markedly increase the number of rules and the number of symbols
in the transducer, which has a detrimental effect on decoding time.

Another solution is to binarize the trees in the training data before rules are
extracted. This does not guarantee that the extracted rules are binarized, but it
does noticeably decrease the number of rules that are not binarized. Transducer
rules extracted from binarized trees will not be equivalent to rules extracted from
the original trees. However, an advantage of rules extracted from binarized trees is
that all unlexicalized rules and most lexicalized rules will be binarized. Binarizing
tree fragments with symbols that have a large rank have an effect similar to the
Markovization of productions in parsing models. We use left-binarized trees. Marcu
et al. (2007) used the EM algorithm to automatically learn preferences for left- and
right-branching binarization, in the context of machine translation. They found that,
for most constituents, left-binarization is preferred.

Another alternative, that does not involve binarization, was proposed by Hopkins
and Langmead (2010). The class of binarized rules is expanded to a class called
scope-3, which still allows cubic time parsing. The scope of a rule is the number of
pairs of consecutive variables in xi · γ · xj , where γ is the rule right hand side and
xi and xj are variables. The time complexity of decoding is O(np), where n is the
sentence length and p is the maximum scope of transducer rules. For each pair of
consecutive variables, the parser needs to consider up to n possible splits in the input
sentence that correspond to the different ways of matching the variables to sentence
fragments. To obtain a scope-3 transducer, rules that have a scope greater than 3
are simply pruned. No other changes are made to the tree structure. Decoding with
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these transducers are performed with chart parsing or Earley parsing (Chung et al.,
2011).

In our experiments we perform xTS decoding with Tiburon. The version of the
Earley parsing algorithm implemented to perform the decoding, implicitly binarize
rules during decoding. The parsing algorithm should run in cubic time even if rules
with more than two variables are allowed. However, in practice we found that includ-
ing rules without restrictions on the number of variables noticeably increases decod-
ing time. While it is unclear exactly what causes this, there are a number of possible
explanations. These include the overhead in performing implicit binarization, the
general detrimental effect of having large rules, and inefficient implementation in
Tiburon.

In our models we experiment with extracting rules from both the standard and
binarized trees. We use scope-3 pruning on both kinds of trees. With the binarized
trees, we alternatively pruned all rules with more than two variables. Furthermore,
in all models rules that have more than 8 words on the right hand side are pruned.

6.2 Training

Next we discuss the training of our tree transducer models.

6.2.1 Smoothing

Sparse data is an inherent property of any real text corpus, encountered when col-
lecting frequency statistics from a finite sized text (Katz, 1987). In the context of
transducer rules extracted for grammatical error correction, a large proportion of
rules occur only once or a few times in the training examples. The additionally
added rules originally have a count of 0. This sparseness decreases the accuracy
of probability estimates obtained by maximum likelihood estimation. In order to
address this problem, we apply smoothing to the rule counts.

Following the practice of other syntax-based tree transducer models (e.g. Chiang
et al. (2009)), we apply Good-Turing smoothing (Katz, 1987). Though this re-
estimation technique was developed for n-gram models, it is considered good practice
to apply it to transducer rule counts. The basic idea is to remove some probability
mass from unreliable probability estimates of observed events (extracted rules) with
low frequencies. This weight is then redistributed to events which never occur in the
training data.

Let N be the total number of events we are considering, and nr the number of
events that occur exactly r times in the training data, so that N = Σrr · nr. Then
the count of an event that occurs r times is re-estimated as

r∗ = (r + 1)
nr+1

nr
. (6.2.1)

The discounting coefficient is dr = r∗/r. The idea here is that counts of events
that occur r times are re-estimated as the total count of events that occur r + 1
times. This implies that events which occur 0 times are assigned the total frequency
of events that occur once. This weight is then distributed amongst all count 0 events.
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The total mass of events that occur once is re-estimated as the total mass of events
that occur twice, etc.

It is possible to re-estimate the probabilities directly from these new counts. A
problem that arises is that there will be some value r ≥ 0 for which nr > 0 and
nr+1 = 0, leading to r∗ = 0. However, usually that value of r is relatively large,
and we are primarily interested in re-estimating small values of r. Katz (1987)
proposed modifying the distribution of weights so that counts r > k are considered
to be reliable. The original discount coefficient is modified so that the sum of the
re-estimated counts are still equal to N over all the events. Then we have

dr =

{
( r
∗

r −
(k+1)nk+1

n1
)/(1− (k+1)nk+1

n1
), 1 ≤ r ≤ k

1, r > k.
(6.2.2)

The re-estimated count for r is then r ·dr. In practice, k = 5 is a good choice, and
we use that in our models. In our implementation we add some additional checks to
ensure that 0 < dr ≤ 1, for r ≤ k.

6.2.2 Weight estimation

The tree transducer models that we use represent joint probability distributions over
correct parse trees and incorrect sentences. We consider two methods to train the
transducer models. The first uses relative frequency estimates, while the second uses
the EM algorithm.

When an incorrect sentence is decoded there is spurious ambiguity in the model
at two levels: Firstly, it is possible that there can be different derivations for the
same tree-string pair. During the application of the model this ambiguity occurs
infrequently. One way to overcome this ambiguity is by performing weighted de-
terminization on the application RTG (Büchse et al., 2010). Not all RTGs can be
determinized, but as a special case RTG without cycles can be. Weighted deter-
minization is implemented in Tiburon. Secondly, the model can generate different
trees with the same yield.

Suppose that c is a correct sentence in the set C of all possible correct sentences,
and i is the given (possibly) incorrect sentence. Let τ(c) represent the set of all parse
trees of c. Then we want to find the sentence

ĉ = arg max
c∈C

P (c|i) (6.2.3)

= arg max
c∈C

P (c, i) (6.2.4)

= arg max
c∈C

Σπ∈τ(c)P (π, i)P (c|π) (6.2.5)

= arg max
c∈C

Σπ∈τ(c)P (π, i). (6.2.6)

In the case of minimal rules, the rules extracted from each training example
corresponds to exactly one derivation. Let f(r) be the smoothed count of the number
of times that rule r occurs in all training derivations. Then the probability estimate
of a rule is

p(r|root(r)) =
f(r)

Σr′:root(r′)=root(r)f(r′)
. (6.2.7)
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As we work with a one-symbol look-ahead transducer, the root of a rule consist
of the state and the head constituent node of the left hand side of the rule. The
re-estimated rule counts used in smoothing are calculated separately for each of the
roots.

An alternative parameterization is to condition rule probabilities on entire left
hand sides, excluding the variable nodes. In this case the extended tree structure is
encoded in the states of the transducer. The potential advantage of this approach is
that a larger look-ahead is used to decide how rules are applied.

When composite rules are also included, we estimate the weights similarly. In
this case the rules extracted from a training example do not correspond to exactly
one derivation any more. However, the frequencies of the extracted composite rules
still provide reasonable probability estimates.

We also experimented with using Tiburon to perform xTS training with the
EM algorithm. Unfortunately we were not able to obtain results with EM training.
Constructing derivation grammars from the training data took over 300 CPU hours,
and after that Tiburon was not able to estimate sensible weights for the transducer
rules, possibly due to numerical underflow.

Example 6.2.1 Rules extracted by our approach are shown in Table 6.1. Rule
weights (obtained by relative frequency estimation) are also included. The weights
are given as log (base 10) probabilities. A classification of the different kinds of
rewrites that the rules perform are also given. The classification is similar to that
used in Section 3.5.

6.3 Decoding

In this section we discuss how decoding is performed with our tree transducer model.
Firstly, sentences are split into clauses. For each sentence the k best corrections pro-
posed by the tree transducer are found and then reranked using an n-gram language
model.

6.3.1 Sentence splitting

Long sentences present a particular challenge to our tree transducer models. In
the NUCLE training data, the average sentence length is 20.38 words. 46% of the
sentences are longer than 20 words, and 13% have length greater than 30.

The decoding time of a tree-to-string transducer for a sentence of length n is
cubic. In practice this means that decoding time for sentences of length more than
20 becomes really long, even if heuristic pruning is applied to the search space during
decoding.

One may argue that for grammatical error correction much of this additional com-
plexity seems unnecessary, as we are only interested in rewriting words or phrases
consisting of a few words, and not to restructure entire sentences. One of the main
hypotheses that we investigate in this thesis is that non-local syntactic information
play a useful role in correcting grammatical errors. However, as we saw in Sec-
tion 2.1, much of the syntactic structure is limited to clauses. For long sentences
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Non-lexicalized
q.S (x0:NP x1:VP) → q.x0 q.x1 −0.596
q.S (x0:VP x1:VP) → q.x0 q.x1 −5.781

q.VP (x0:VP x1:SBAR) → q.x0 q.x1 −3.723

Word identity
q.NN (work) → work −2.614
q.VBP (work) → work −2.475
q.DT (the) → the −0.183

Single word substitution
q.NN (work) → works −4.343

q.VBP (work) → working −4.541
q.VBZ (works) → work −4.802

q.DT (the) → a −3.100
q.IN (of ) → from −3.901

Constituency phrase substitution
q.NP (DT (the) NN (right)) → rights −5.109

q.VP (VBG (being) VP (VBN (researched)))
→ under researching −6.272

Context-sensitive phrase substitution
q.VP (TO (to) VP (VB (work) x0:PP))

→ working q.x0 −6.272
q.PP (IN (in) S (VP (VBG (generating) x0:NP)))

→ to generate q.x0 −5.480

Context-sensitive word insertion and deletion
q.NP (DT (the x0:NN) → q.x0 −2.634
q.VP (VBZ (has) x0:VP) → q.x0 −5.202

q.VP (x0:VB x1:NP) → q.x0 into q.x1 −5.203

Table 6.1: Example transducer rules by type, with log probability weights.

which consist of multiple clauses, the information needed to make decisions regarding
grammaticality will in most cases be limited to clausal level.

Therefore, to reduce the complexity of decoding long sentences, we perform lin-
guistically motivated sentence splits on the sentences before decoding them. The
idea is to split sentences into clauses, decode each of the clauses separately, and then
recombine the output clauses to reconstruct the system output sentences. Sentence
splitting is based on constituency parses (obtained with the Berkeley parser) of the
incorrect sentences under consideration. The goal is to extract clauses whose form
is similar to full sentences, though due to the hierarchical structure of clauses this is
not always possible.

We distinguish between S-clauses and SBAR-clauses. Using PTB syntactic tags,
we call clauses annotated with S, SINV or SQ tags S-clauses, and clauses anno-
tated with SBAR or SBARQ constituents SBAR-clauses. A S-clause usually has
the form of a complete sentence. A SBAR-clause usually consists of an introductory
subordinating conjunction or wh-word, followed by a S-clause.

Our basic approach is to perform splits on S-clauses. A split is performed between
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Figure 6.3: The effect of clause splitting on sentence lengths.

the phrase before the start position of a S-clause, which is seen as one clause, and
the phrase after that position, which is seen as another clause. If the parse tree node
of the S-clause is the child of a SBAR-clause node, the split is performed between
the phrase before the starting position of the SBAR-clause, and the phrase after the
start of the S-clause. The introductory word(s) in the SBAR-clause are excluded
from the extracted clauses.

Splits are also performed between phrases separated by a coordinating conjunc-
tion (indicated by a CC tag), if the CC node is a child of a S-clause node. The
phrase before the conjunction is split from the phrase after the conjunction, while
the conjunction itself is excluded.

Extracted clauses that are shorter than 30 words and longer than 4 words are
decoded. After decoding and reranking have been performed, the output clauses and
words excluded from clauses are recombined to reconstruct the original sentences.

The NUCLE test set consists of 1381 sentences, which was split into 2247 clauses
using our clause splitting heuristic. Figure 6.3 shows the distribution of sentence
lengths before and after the sentences are split.

Example 6.3.1 A split of the sentence The solution can be obtained by using tech-
nology to achieve a better usage of space is shown in Figure 6.4. The parse tree of
the complete sentence is decomposed using our clause extraction algorithm. Context
trees are shown for the clauses, with the variable x1 indicating where a split has been
performed.
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6.3.2 k-Best decoding

A method that is often used in NLP to combine models is k-best reranking. The given
sentence is applied to a first model (in our case, a tree transducer). The k highest-
scoring outputs from the application are then reranked using a second model. The
scores of the two models are combined, and the hypothesis with the highest weight
after rescoring is chosen as the output. In our models, we found that a good trade-
off between speed and accuracy is to find a list of trees of the 1000-best derivations
for a given (incorrect) sentence. The weights of different derivations for which the
parse trees have the same yields, are then summed to find weights for each of the
hypothesis sentences. This is an approximation of equation (6.2.6), which takes the
sum over all parse trees with the same yield. We use Tiburon’s implementation of
backward application to xTSs to obtain the trees of the k-best derivations.

As the search space of the model is large, we need to apply some heuristic pruning.
Following practices used in parsing models such as (Huang and Chiang, 2005) and
translation models such as (Chiang, 2007), beam search is performed. The cell limit
γ, the maximum number of hypotheses that can be kept at a state during decoding,
is set to 30. The beam width β is set to 10−4. This means that if a hypothesis score
is worse than β times the score of the best partial hypothesis found up to a specific
point in the model, the hypothesis is discarded. The parameters γ and β were tuned
to make decoding feasible on a desktop computer with 8GB RAM, and so that it
does not take more than 1 minute on average to perform tree transducer decoding.

6.3.3 Language model reranking

Although the tree transducer model defines a joint probability distribution, incor-
porating an n-gram language model into our system considerably increases its per-
formance. The main reason for this is that the generative transducer model alone
does not have enough discriminative power to distinguish between well-formed and
ungrammatical sentences. Another reason is that we do not follow practices such
as using a lexicalized grammar or splitting constituency symbols to reduce indepen-
dence assumptions. We use SRILM to compute the language model score for each
of the hypothesis sentences generated by the transducer model.

In order to combine the transducer model and language model scores, the log
probabilities of these scores are normalized by the length of the incorrect sentence.
For an incorrect sentence i and a correct sentence c, the normalized transducer model
score is represented by TT (c, i) and the normalized language model score by LM(c).
For a given incorrect sentence i and a set of hypothesis sentences H(i) obtained from
the transducer model, we want to find

ĉ = arg max
c∈H(i)

[TT (c, i) + α · LM(c)]. (6.3.1)

The parameter α is set discriminatively to maximize the F1 score of the model on
a validation set. Let I be the set of incorrect sentences in the validation set. Then
we want to find

α̂ = arg max
α

F1[Σi∈Iedits(ĉ, i, g(i))], (6.3.2)
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where ĉ is given by (6.3.1) and edits is the sufficient statistics for the F1 score of ĉ
for the incorrect sentence i and gold standard edits g(i).

6.4 Conclusion

This chapter set out the tree transducer models we propose to perform grammatical
error correction. Section 6.1 described the formulation of transducer rules. Trans-
ducer training and decoding were described in Sections 6.2 and 6.3, respectively. In
the next chapter we present results of experiments performed with different config-
urations of our models.
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Figure 6.4: Parse trees of a sentence split into clauses.



Chapter 7

Results

In this chapter we present results for our grammar correction methods. We start by
evaluating our baseline FST model. Then results for different modelling choices and
parameterizations for our tree-to-string transducer models are given. We give results
for the performance of different system components, as well as the performance of
our approach on different error types. The NUCLE dataset is used for most of the
analyses of modelling choices. However, we also give results for the FCE dataset,
covering a broader set of errors. Most of the experiments reported in this chapter
were performed on the Stellenbosch High Performance Computer.

7.1 FST model

Firstly, we give results for the baseline FST model, trained on the NUCLE data set
to correct the five error types we consider for that corpus. The FST model does not
have hyperparameters, so the validation sets are not used. Decoding is performed
on the development and test sets. The precision, recall and F1 scores are given in
Table 7.1, as percentages.

Data set Precision Recall F1
Development 6.77 27.94 10.89
Test 24.30 27.37 25.74

Table 7.1: Results for the FST model on NUCLE.

Interestingly, the model recall on the two sets are almost equal, but the precision
is much higher on the test set than on the development set. The main explanation
for this is that the test set contains a larger proportion of errors than the NUCLE
training data (from which the development set was drawn). As a result the system
generates more false positives (changes made to correct words or phrases) on the
development set than on the test set.

In Table 7.2 we give a breakdown of the scores for individual error types. In
Section 7.4 these results are compared to that of our tree transducer models. As
the system output is not labeled with error types of edits, we do an automatic

84



CHAPTER 7. RESULTS 85

Data set Development Test
Error type P R F1 P R F1
Determiner 7.28 33.33 11.95 34.98 41.97 38.16
Preposition 4.75 25.90 8.04 11.86 14.15 12.90
Noun number 18.45 28.51 22.40 39.47 22.73 28.85
Verb form or SVA 11.65 17.13 13.87 14.21 10.57 12.12

Table 7.2: Results for the FST model on NUCLE, for each error type.

classification of error types, similar to the method of Ng et al. (2013), to compute
the precision of different error types.

Especially interesting is the high performance of determiner error correction on
the test set. An error analysis shows that a very common determiner error in the test
set is unnecessary determiner errors, where the occurrence of an article is incorrect
and the article should be deleted. The reason for the high frequency of these errors
lies in the profile of the learners who wrote the NUCLE essays. Most of these learners
are native speakers of Chinese, a language without articles. However, the learners
are already relatively proficient in English, so they know that articles should be used,
but now tend to use them in contexts where they should not be used as well.

The error transducer has transitions to insert or delete determiners independent
of any context. The language model judges the grammaticality of hypothesis correc-
tions with and without articles. Though the trigram model is a simple model, the
results indicate that in many cases it is able to judge correctly that a determiner
should be deleted. Furthermore, the language model gives a preference to shorter
sentences, as they tend to have larger probabilities, which also increases the chance
that the model proposes determiner deletions.

For the other error types, the general trend is that the recall is lower on the test
set than on the development set, but the precision is higher. As both verb form and
subject-verb agreement errors involve a change in verb form, we do not distinguish
between them in the error classification. However, using the gold standard edit labels,
we can obtain separate recall results. On the development set, recall is 24.13 for verb
form errors and 10.64 for subject-verb agreement. On the test set, a recall of 14.75
for verb form errors and 6.45 for subject-verb agreement is obtained. Therefore,
the model performance on subject-verb agreement errors is quite low. This can be
explained by the fact that in most subject-verb agreement learner errors the verb
of a clause and the head noun of the subject noun phrase preceding the clause are
not adjacent to each other. If the distance between the subject head noun and the
verb is greater than or equal to n, the dependency cannot be modelled by an n-gram
model.

7.2 Language model reranking

In this and the following sections we present results for our tree transducer models.
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Figure 7.1: Precision, recall and F1 scores for different language model weights α on
the validation set.

7.2.1 Language model weight

As explained in Section 6.3.3 the hypothesis clauses generated by the xTS model are
reranked by weighing the xTS and n-gram language model scores of each hypothesis.
The validation set is used to set the value of α, the weight of the language model
score.

For the minimal rules, the best F1 score is obtained with α = 1.69, and when
composite rules are also included, with α = 1.59. Figure 7.1 shows how the precision,
recall and F1 scores are affected by the choice of α on the validation set when the
rule set includes both minimal and composite rules.

The precision and recall both increase initially as the value of α is increased. The
recall is always greater than the precision, and increases faster than the precision.
When the value of α becomes greater than 5, the scores decrease, but only slightly.

The stronger the weight on the language model, the higher the recall of the
model. As the language model score is only dependent on the proposed correction,
it will give preference to hypotheses with a high recall (that are more grammatical),
without regard to the precision (as it does not consider the original versions of the
hypotheses).
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Rule set Minimal Composite
Data set Accuracy Accuracy
Development Oracle no change 99.2 99.4
Development Oracle change 46.1 60.7
Test Oracle no change 98.4 100.0
Test Oracle change 38.8 50.1

Table 7.3: Oracle hypothesis coverage results on NUCLE.

7.2.2 Clause level results

As we use a combination of two models, it is useful to measure the performance of
the different components. A way to do this is to perform oracle reranking on the
hypothesis sets generated by the transducer model. For each sentence, the oracle
picks the hypothesis with the highest sentence-level F1 score. This is an approxi-
mation of selecting hypotheses to maximize the overall F1 score. We are especially
interested in the hypothesis coverage, the proportion of times that the correct clause
occur among the hypothesis clauses.

Oracle hypothesis coverage results for the clausal level at which decoding is per-
formed are given in Table 7.3. In a typical decoding experiment, the 1000-best list
generated by the tree transducer contains on average 75.7 distinct hypotheses. If a
sentence that has one or two errors is split into multiple clauses, it is likely that some
of the clauses will have no more errors. Consequently, the proportion of clauses that
have no errors is higher than the proportion of sentences that have no errors. On
the development set, 82.5% of clauses should not be changed, while on the test set
that drops to 54.2%. When no changes should be made to a clause, the correct (un-
changed) clause is included in almost all the generated hypothesis sets. For clauses
that should be changed, the oracle accuracy is less. The proportion of hypothesis
sets that include the correct clause increases when composite rules are included, on
both the development and the test sets.

7.3 Rule sets

In this section we present results regarding modelling choices in the construction of
rule sets.

7.3.1 Minimal and composite rules

We performed experiments with rule sets consisting either only of minimal rules, or
of minimal and composite rules. Results for these models are given in Table 7.4.

On the development set, including the composite rules increases the recall. The
F1 score increases slightly, though not very noticeably. On the oracle scores we
can clearly see the advantage of including composite rules. However, this does not
translate into a similar improvement in the model performance after reranking. A
reason for this may be that the n-gram model does not assign sufficiently high scores
to the hypothesis generated by using composite rules, as they involve longer-distance
dependencies.
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Rule set Minimal Composite
Data set P R F1 P R F1
Development 8.03 15.02 10.46 8.01 17.12 10.91
Development Oracle 66.7 59.8 63.1 75.54 70.95 73.18
Test (original) 21.81 13.33 16.55 27.00 13.33 17.85
Test (revised) 35.96 14.61 20.77 37.12 18.91 25.05

Table 7.4: Results for minimal and composite rules.

For the test set, including composite rules increases the model performance. For
our submission to the CoNLL-2013 shared task (Buys and van der Merwe, 2013),
the version including composite rules was used. The recall on the test set and the
development set are very similar. As with the FST model, the precision of the model
is noticeably better on the test set than on the development set.

Our model F1 score of 17.85% ranked 6th out of the 17 entries to the CoNLL-
2013 shared task. The highest-ranked team, from the University of Illinois, obtained
recall, precision and F1 scores of 23.49%, 46.45% and 31.20%, respectively. They
used statistical classifiers, while the second placed team, from the National Tsing
Hua University, followed a language modelling approach to obtain an F1 score of
25.01%. Our model outperformed both a phrase-based SMT approach, with an F1
score of 16.06%, and a noisy channel model word transformation approach, with an
F1 score of 7.56%. Interestingly though, our FST model would have ranked second,
with an F1 score of 25.75%, mainly due to its strong performance in determiner error
correction on the test set.

The revised test set includes alternative annotations we suggested based on plau-
sible corrections in our system output that were not included in the original anno-
tations. This explains why the model scores increase more on the rule set including
the composite rules than on the minimal rule set. In the shared task, our model
also ranked 6th when scored with the alternative annotations. The score of the top-
ranked University of Illinois team increased to 42.14% in this case. As the revised
annotations favour the specific models for which the alternative annotations were
suggested, we do not use it in further model comparisons.

7.3.2 Rule binarization and pruning

Next we give results regarding the binarization of rules and related modelling choices
in the construction of the rule set. The NUCLE development set is used, and only
minimal rules are included. See the results in Table 7.5. The results show that
applying scope-3 pruning to standard parse trees outperforms using binarized trees
with all non-binarized rules pruned. Adding extra look-ahead to the context of the
next rule to be applied does not improve performance for the standard (unbina-
rized) trees. However, it does improve the performance slightly when binarized trees
are used. The reason for this is that there is less sparsity in the rules extracted
from binarized trees than from standard trees. Therefore, the additional parameters
that arise from the extra look-ahead can be estimated more accurately than when
standard trees are used.
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Rule set Precision Recall F1
Binarized 8.03 15.02 10.46
Standard, Scope-3 7.88 19.43 11.21
Standard, look-ahead 5.80 19.33 8.92
Binarized, look-ahead 9.79 15.02 11.86

Table 7.5: Results for different rule set binarization and pruning methods.

Rule set Minimal Composite
Error type P R F1 P R F1
Determiner 8.00 15.90 10.64 8.92 15.64 11.36
Preposition 6.32 11.51 8.16 7.19 16.55 10.02
Noun number 16.40 17.36 16.87 12.59 22.31 16.10
Verb form or SVA 7.21 12.71 9.20 7.08 13.81 9.36

Table 7.6: Results on the NUCLE development set, for each error type.

Error type Minimal Composite
P R F1 P R F1

Determiner 29.56 17.39 21.90 30.53 12.59 17.83
Preposition 12.60 5.14 7.31 26.36 9.32 13.78
Noun number 38.92 14.64 21.28 43.63 18.18 25.67
Verb form or SVA 10.55 10.16 10.35 17.13 12.60 14.52

Table 7.7: Results on the NUCLE original test set, for each error type.

7.4 Performance on different error types

Next we analyse the performance of our models on different error types on the NU-
CLE data set. The results for the development set are given in Table 7.6, and for
the test set in Table 7.7. In most cases the performance improves when composite
rules are included. The exceptions are for noun number errors on the development
set (though the difference is very small), and for determiner errors on the test set.
As on the FST model, the precision is higher on the development set than on the
test set, while the recall is lower in most cases (with the exception of determiner
errors for the minimal rule set).

For determiner errors, the FST model performs better than the xTS models,
especially on the test set. The xTS model also performs worse when composite rules
are included. A possible explanation for this is that when more context is added to
rules that perform determiner edits, the weight of these rules cannot be estimated
accurately, as each of the contexts do not occur often enough in the training data.
Another weakness of the xTS model is that there are no parameters that control the
preference for performing insertions or deletions of word classes. We observe that
the model tends to perform too many unnecessary deletions, especially of non-article
determiners and content words, while performing too few insertions such as article
insertions.
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Data set Development Test
Rule set Minimal Composite Minimal Composite
Verb form 18.39 18.39 13.11 14.75
Subject-verb agreement 7.45 16.55 7.26 9.32

Table 7.8: Recall for verb form and subject-verb agreement errors.

For preposition errors, the xTS model performs very similarly to the FST model
on the development set for minimal rules, but when composite rules are included
in the xTS model, it outperforms the FST model. On the test set, the xTS with
minimal rules performs worse than the FST model, but when composite rules are
included it performs better. This shows that the additional context in composite
rules is very beneficial to correcting preposition errors.

For noun number errors, the FST model performs better than the xTS models,
even though the xTS model performs better when composite rules are included on
the test set. This shows that more context is beneficial, but that the additional
parameters are not estimated accurately enough.

For verb form and subject-verb agreement errors, the xTS model outperforms the
FST model on the test set when composite rules are included. On the development
set, the xTS model performs worse than the FST model. The recall for verb form
and subject-verb agreement errors are given in Table 7.8. For verb form errors, the
FST model performs better on the development set, but similar on the test set. For
subject-verb agreement, the recall is better for xTS with composite rules than for
the FST model. One would expect a syntax-based model to perform better on SVA
errors. However, in the constituency parse tree representation used in our model, the
subject noun phrase and the predicate verb phrase are in different subtrees. As our
model does not include head annotation (as the RTG in Figure 3.5), subject-verb
agreement is modelled insufficiently with our model.

Next we briefly compare the error type results to that of participating systems
in the CoNLL shared task. Our model ranked second in preposition correction.
Interestingly, the top three models for preposition error correction used machine
translation or language modelling approaches. The best model obtained an F1 score
of 17.53%. For noun number correction our model ranked third; the top two teams
obtained F1 scores of 43.26% and 44.25%, respectively. On determiner correction
our xTS model ranked 8th. However, our FST model would have ranked first on
determiner correction, as the F1 score of the top entry for this error type was 33.4%.
On verb form and SVA errors, our system was also placed 8th. The top-scoring
team achieved an F1 score of 24.51%. However, our model still outperformed the
phrase-based SMT approach, with an F1 of 13.46%.

7.5 FCE results

We also evaluated the performance of our models on the FCE dataset.
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Data set Precision Recall F1
Development 13.09 18.52 15.34
Test 14.80 18.38 16.40

Table 7.9: Results for the FST model on FCE.

Error type Development Test
P R F1 P R F1

Verb 20.73 15.23 17.56 22.22 15.51 18.27
Noun 10.08 22.14 13.85 11.46 18.73 14.22
Adjective 20.26 21.23 20.73 19.46 14.08 16.33
Adverb 11.58 22.36 15.25 7.91 19.08 11.19
Preposition 13.68 20.74 16.48 12.76 18.80 15.20
Conjunction 8.28 14.46 10.53 7.37 10.94 8.81
Quantifier 33.89 19.44 25.92 41.12 17.07 24.14
Pronoun 6.58 10.30 8.03 6.41 8.57 7.33
Determiner 14.97 23.58 18.32 25.23 27.08 26.12

Table 7.10: Results for the FST model on FCE, for each error type.

Rule set Minimal Composite
Data set P R F1 P R F1
Validation 11.14 17.51 13.62 11.70 18.54 14.35
Development 10.50 15.63 12.56 10.97 16.49 13.17
Development Oracle 44.77 42.94 43.84 41.59 43.86 42.70
Test 10.71 15.28 12.59 9.87 14.06 11.6

Table 7.11: Results on FCE for minimal and composite rules.

7.5.1 FST model

The results of the FST model on FCE are given in Table 7.9. A breakdown of results
for the different error types considered is given in Table 7.10. The model performance
on the development and test sets are very similar for most error types. The overall
increase in performance on the test set over the development set is caused mainly by
an increase in performance on determiner errors.

7.5.2 Tree transducer models

We also evaluated the xTS models on the FCE corpus. The results are given in Table
7.11. For the minimal rule set, the α that gives the best performance on the validation
set is 6.053. This high value shows that the contribution of the transducer model
score is relatively small in performing optimal reranking. However, the reranked
transducer model still performs slightly better than if only the language model score
were used to rerank the hypothesis. When composite rules are also included, the
model performs slightly better on the development set, but worse on the test set.
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Rule set Minimal Composite
Data set Accuracy Accuracy
Development Oracle no change 93.3 88.6
Development Oracle change 29.1 19.2
Test Oracle no change 88.5 85.5
Test Oracle change 18.5 16.7

Table 7.12: Oracle clause level results on FCE.

Error type Development Test
P R F1 P R F1

Verb 8.92 11.87 10.19 8.02 12.03 9.62
Noun 12.55 20.54 15.58 10.56 17.19 13.08
Adjective 15.84 15.53 15.69 13.33 7.93 9.95
Adverb 6.99 10.48 8.39 8.89 9.63 9.25
Preposition 16.8 20.83 18.6 12.84 17.51 14.81
Conjunction 3.57 3.12 3.33 0.0 0.0 0.0
Quantifier 16.67 6.45 9.30 38.46 17.85 24.39
Pronoun 5.77 8.24 6.79 3.34 5.83 4.29
Determiner 12.03 23.56 15.94 16.38 19.14 17.65

Table 7.13: Results on FCE, for each error type.

Results on the performance at clausal level are given in Table 7.12. On the
development set and the test set 57.6% and 55.4% of clauses do not contain any
corrections, respectively. The oracle scores are low in comparison to the NUCLE
oracle scores. This is mainly due to the fact that we based most of our modelling
choices on NUCLE and the more limited set of errors considered for that dataset.
Another explanation is that for some of the error types considered here the model
does not generalize well enough, due to data sparsity in the training data.

A breakdown of the performance of the model for different error types when
only minimal rules are included is given in Table 7.13. For most of the error types
considered, the performance is worse than on the FST model. For errors involving
prepositions and nouns, the xTS model performs better on the development set. It
was for these error types that we also obtained the best relative performance on
NUCLE. We expect that with modelling choices tailored more towards the broader
set of error types it is possible to improve the model performance on the FCE dataset.

7.6 Conclusion

In this chapter we presented results of empirical evaluations of our proposed models.
The baseline FST model was evaluated in Section 7.1. Results regarding language
model reranking were given in Section 7.2. Section 7.3 gave results for minimal and
composite rules, binarization and related modelling choices. Performance of the xTS
models on different error types were presented in Section 7.4. The models were also
evaluated on the FCE dataset, in Section 7.5.



Chapter 8

Conclusion

In this thesis we investigated a novel method for performing grammatical error cor-
rection with probabilistic tree transducers. We showed how weighted tree-to-string
transducers are used as probabilistic models that express syntax-based transforma-
tions in natural language, and how grammatical error correction can be formulated
as such a transformation. In this chapter we summarize the contributions of our
study and discuss several directions for future work.

8.1 Contributions

We highlight the main contributions of our study:

- We proposed a novel application of weighted tree transducers and methods
developed originally for syntax-based SMT, to grammatical error correction.
In contrast to related SMT-inspired or noisy-channel model approaches, we
model the syntax of the correct version of sentences directly.

- We showed that for some error types (especially for article errors) a simple FST
model can perform better than some of the more sophisticated approaches in
the literature.

- We argued that grammatical error correction can be formulated by linguistically-
motivated phrase rewrites. Furthermore, we showed how the GHKM algorithm
(which we re-implemented) can be applied to extract such rewrite rules. This
can be seen as a kind of automatic feature extraction, taking different levels of
context into consideration as necessary.

- We developed an end-to-end NLP system for GEC, based on tree transducers.
Our framework can handle different data formats and is modular enough to
incorporate different transducer models and decoders. We also gave results
regarding the performance of Tiburon.

- We investigated strategies to make the search space of tree transducer models
more feasible: Our algorithm to split sentences into clauses may also have
applications in other NLP tasks where long sentences need to be processed.
Heuristic beam search, pruning and placing restrictions on transducer rules
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were investigated empirically. A strategy to rerank the tree transducer output
with a language model to optimize the F1 score directly on a validation set
was also proposed.

- We considered different parameterizations of our tree transducer models, espe-
cially regarding the binarization of rules and trees, and taking different levels
of context into consideration. Furthermore it was shown that, in most cases,
including composite rules increases the model performance.

- We submitted a successful entry for the CoNLL-2013 shared task in gram-
matical error correction. Overall, our system (Buys and van der Merwe, 2013)
ranked 6th out of the 17 participating systems, and was placed in the top three
for two of the five error types considered.

8.2 Future work

While we were able to obtain promising results with our models, there are several
avenues to improve and extend this research. We suggest the following for future
work:

- Our model should be evaluated more systematically against statistical classi-
fiers which use similar features. In particular, this should provide more insight
on why our FST model performs so well without using any contextual features
other than the information encoded in the n-gram model.

- More sophisticated decoding methods that have been developed for hierarchical
phrase-based and syntax-based SMT should be applied to our models. Specif-
ically, the n-gram language model should be integrated into decoding without
first obtaining a k-best list of transducer model output. One strategy for lan-
guage model integration is cube pruning (Chiang, 2007). Implementations of
this are publicly available for SCFGs (for example in cdec (Dyer et al., 2010))
but not, as far as we know, for xTS models. In another strategy, HiFST (Gis-
pert et al., 2010), the hypothesis sentences generated by a SCFG are encoded
as a FST, which is then composed with a language model. This strategy makes
fewer search errors than cube pruning, and can also be extended to xTS de-
coding, when the transducer does not contain cycles.

- Methods to perform discriminative training using multiple features should be
applied to our models. Two methods that have been applied to syntax-based
SMT are MERT (Och, 2003) and MIRA (Chiang et al., 2009). These algo-
rithms optimize feature weights to minimize some loss function related to the
evaluation metric (for machine translation, the BLEU score). These algorithms
can be used in our models to set weights to maximize the F1 score of a valida-
tion set. MERT is used for a small number of features (usually not more than
20), while MIRA is scalable to a larger number of features. An example where
additional features may be helpful, is in controlling the model preference for
performing word insertions and deletions. A feature for the weight that our
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FST error model produces may also be useful. The balance between rules that
perform changes and those that don’t can also be controlled.

- Another method for discriminative training is a large margin framework based
on structural SVMs, that has been applied to sentence compression with STSGs
(Cohn and Lapata, 2007). In this framework, a loss function is also specified,
and sparse features are used.

- Including a RTG language model will increase our system’s ability to model
syntax accurately. The set of parse trees of the correct side of training data
sentences is large enough to enable our transducer model to perform parsing
with a reasonable degree of accurately. However, if the tree-based language
model and error model components are decomposed as a noisy channel model,
the parameterization of both can be improved. Using manually-annotated
parse trees, for example from the PTB, as training data for the tree-based
language model will also produce a better RTG.

- Grammatical error correction systems need more knowledge sources than the
almost purely syntactic model used by our system. Semantics plays an impor-
tant role in many of the error types we are interested in correcting, so ways to
include semantics explicitly in our models should be considered. One possibil-
ity is to use dependency parsing, a powerful formalism for expressing syntactic
and semantic relations between words. Dependency parse information has pre-
viously been included in statistical classifiers for GEC. It would be interesting
to investigate using dependency trees instead of constituency trees as the basis
of our model. Alternatively, dependency information could be incorporated in
the constituency syntax-based transducer formulation.

- Though n-gram models are very useful, our system is presently too dependent
on the n-gram model. Good modelling choices should improve the perfor-
mance of our model without using a n-gram model, so that the n-gram model
can function only as an additional source of information regarding local word
preferences, not as the primary model to make judgements regarding the hy-
potheses generated by the transducer model.

- It has been shown that SVM classifiers trained with features based on syntax
trees are very successful in judging the grammaticality of sentences (Ferraro
et al., 2012). Incorporating such a classifier into our system may also improve
performance.

- Lastly, it has been shown that models for the selection task can improve the
performance of error correction systems (Dahlmeier and Ng, 2011b). Therefore
combining a tree transducer model for selection with the current tree trans-
ducer model trained only on annotated learner text can further improve the
performance of our model, as much more training data is available for the
selection task.
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8.3 Conclusion

Although there is still much work to be done in order to develop high accuracy
GEC systems, we believe that our study makes a contribution towards that goal.
Many of the models applicable to the complex structures in natural language have
been developed only recently. With the rapid development of more complex machine
learning methods enabled by the increasing availability of computational resources,
one can only expect that significant progress will be made in the development of
suitable models in the near future. Grammatical error correction is a challenging
and important problem, and we really hope that more research in NLP will be
directed towards this problem. This thesis aspires to be a step in that direction.



Appendix A

Tagsets

Tag Meaning
Clausal level tags
S Simple declarative clause
SBAR Clause introduced by a (possibly empty) subordinating conjunction
SBARQ Direct question introduced by a wh-word or a wh-phrase
SINV Declarative sentence with subject-aux inversion
SQ Subconstituent of SBARQ excluding the wh-word or wh-phrase
RRC Reduced relative clause
Phrasal level tags
VP Verb phrase
ADVP Adverb phrase
NP Noun phrase
NX Head NP of certain complex NPs
ADJP Adjective phrase
PP Prepositional phrase
CONJP Conjunction phrase
QP Quantifier phrase
UCP Unlike Coordinated phrase
WHADJP Wh-adjective Phrase
WHAVP Wh-adverb phrase
WHNP Wh-noun phrase
WHPP Wh-prepositional phrase
INTJ Interjection
PRT Particle
LST List marker
PRN Parenthetical
FRAG Fragment
NAC Not a constituent
X Unknown, uncertain, or unbracketable

Table A.1: The Penn Treebank syntactic tagset.
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Tag Meaning
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol (mathematical or scientific)
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-third person singular present
VBZ Verb, third person singular present
WDT wh-determiner
WP wh-pronoun
WP$ Possessive wh-pronoun
WRB wh-adverb

Table A.2: The Penn Treebank POS tagset.



Appendix B

Data Formats

In this appendix we provide brief descriptions of the formats of the datasets used in
our model implementations.

B.1 FCE

The FCE corpus1 (Yannakoudakis et al., 2011) is annotated in XML format. Each
XML file corresponds to the examination script of a learner, and contains 2 short
essays of 120 to 180 words each. In our implementation we parse the XML with
the Python Minidom parser, a lightweight implementation of the DOM standard for
XML processing.

Essays are divided into paragraphs, indicated with 〈p〉 and 〈/p〉 tags. The essays
are also annotated with metadata, including the essay score and the native language
and age of the writer. For each suggested edit to the original, the error type, original
incorrect word or phrase and corrected word or phrase is given. The error type tags
usually consist of two letters, the first denoting the part-of-speech of the error and
the second the kind of change needed to perform the correction. The tags follow the
error classifications of Tables 2.1 and 2.2. Here is an example of an error-annotated
paragraph:

<p>Thanks for <NS type="DD"><i>you</i><c>your</c></NS> letter.
I am so <NS type="RJ"><i>exciting</i><c>excited</c> </NS> that
I have won the first prize. I will give you all <NS type="MD">
<c>the</c></NS> information you need and ask some questions.</p>

Error corrections in the annotations can be nested. To handle this we need to
parse the XML recursively to extract a flattened correction consisting of an incorrect
and a correct phrase. It is possible that a single word can be edited more that once,
as in this example:

... which caused me
<NS type=’FN’> <i> <NS type=’RN’> <i>trouble</i>

<c>problem</c> </NS> </i>
<c>problems</c> </NS>.

1http://ilexir.co.uk/applications/clc-fce-dataset/
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In our processing the intermediate correction is ignored. Therefore the correction
extracted from the example is trouble → problems.

B.2 NUCLE

The other learner corpus used is the National University of Singapore Corpus for
Learner English (NUCLE) (Dahlmeier et al., 2013). Version 2 of this corpus was
released as part of the CoNLL-2013 shared task. The corpus is provided in two
formats, “raw” and “pre-processed”.

The raw dataset is annotated in SGML (Standard Generalized Markup Lan-
guage) format. The corpus consists of documents which are learner essays. Each
essay is subdivided into paragraphs. The text in each document is followed by an-
notations of errors with corrections. The annotations are marked by start and end
offsets that are indexes of characters in a specified paragraph. For each error anno-
tation the type of error is also marked, using the error tags described in 2.3.

Below is an example extract from a document annotation:

<DOC nid="840">
<TEXT>
<P>
Engineering design process can be defined as a process ...
</P>
<P>
Firstly, engineering design ...
</P>
...
</TEXT>
<ANNOTATION teacher_id="173">
<MISTAKE start_par="0" start_off="0" end_par="0" end_off="26">
<TYPE>ArtOrDet</TYPE>
<CORRECTION>The engineering design process</CORRECTION>
</MISTAKE>
...
</ANNOTATION>
</DOC>
<DOC nid="862">
...

In the pre-processed version, the original sentences are formatted in a column
format traditionally used for CoNLL shared tasks. Sentence and word tokenization
are performed with NLTK punkt and word tokenize, respectively. The constituency
and dependency parses of each sentence are also included. The sentences are parsed
using the Stanford parser. Below is an example sentence in CoNLL format:

NID PID SID TOKENID TOKEN POS DPHEAD DPREL SYNT
850 4 2 0 This DT 3 nsubj (ROOT(S(NP*)
850 4 2 1 will MD 3 aux (VP*
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850 4 2 2 directly RB 3 advmod (ADVP*)
850 4 2 3 affects VB -1 root (VP*
850 4 2 4 the DT 5 det (NP*
850 4 2 5 process NN 3 dobj *)
850 4 2 6 on IN 3 prep (PP*
850 4 2 7 engineering NN 8 nn (NP(NP*
850 4 2 8 design NN 6 pobj *)
850 4 2 9 of IN 8 prep (PP*
850 4 2 10 innovation NN 9 pobj (NP*))))
850 4 2 11 especially RB 12 advmod (PP*
850 4 2 12 on IN 3 prep *
850 4 2 13 raising VBG 12 pcomp (S(VP*
850 4 2 14 solutions NNS 13 dobj (NP*))))))
850 4 2 15 . . - - *))

NID is the document identifier, PID the paragraph identifier, SID the paragraph
identifier and TOKENID the word token identifier. The POS and SYNT columns
give the constituency parse. A fragment of the constituency tree directly preceding
the word is given in the SYNT table, and the syntactic parse can be reconstructed
from it. The dependency parse is given in the columns DPHEAD and DPREL.
DPHEAD indicates the index of the dependency head word of each token, while
DPREL is the type of dependency relation between the word and it head.

The error annotations for the preprocessed version are contained in a separate
SGML file. The character-level offsets of corrections are projected to token-level
annotations. Below are the error annotations for the sentence in the above example:

<ANNOTATION>
<MISTAKE nid="850" pid="4" sid="2" start_token="1" end_token="4">
<TYPE>Vt</TYPE>
<CORRECTION>directly affects</CORRECTION>
</MISTAKE>
<MISTAKE nid="850" pid="4" sid="2" start_token="6" end_token="7">
<TYPE>Prep</TYPE>
<CORRECTION>of</CORRECTION>
</MISTAKE>
<MISTAKE nid="850" pid="4" sid="2" start_token="7" end_token="11">
<TYPE>WOinc</TYPE>
<CORRECTION>innovative engineering design</CORRECTION>
</MISTAKE>
<MISTAKE nid="850" pid="4" sid="2" start_token="12" end_token="13">
<TYPE>Wci</TYPE>
<CORRECTION>in</CORRECTION>
</MISTAKE>
<MISTAKE nid="850" pid="4" sid="2" start_token="13" end_token="15">
<TYPE>Um</TYPE>
<CORRECTION></CORRECTION>
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</MISTAKE>
</ANNOTATION>

The SGML files are parsed with the Python ElementTree XML parser. By adding
a root node to a SGML construction, it can be parsed as XML.

B.3 Parse trees

The format of parse trees produced by the Stanford or Berkeley parsers is different
from the format of trees used in this thesis. The format of the parser output of a
tree t with root node σ is (recursively) t = (σ t1 t2 . . . tn). Below is the parser output
representation of the parse tree in Figure 2.1:

(S (NP (DT the) (NN man) (VP (VBZ helps) (NP (DT the) (NNS chil-
dren)))))

B.4 M 2 scorer

We use the M2 scorer2 (Dahlmeier and Ng, 2012b) to evaluate our system output.
The system output is accepted as one sentence per line, tokenized, and with the orig-
inal capitalization. The gold standard file contains the original sentences, together
with the gold standard edits of each sentence. The format for an error annotation
is:

A <token start offset> <token end offset>|||<error type>|||<correction1>||
<correction2>||...correctionN|||<required>|||<comment>|||<annotator id>

Below is an example sentence annotation:

S This will directly affects the process on engineering design of innovation
especially on raising solutions .
A 1 4|||Vt|||directly affects|||REQUIRED|||-NONE-|||0
A 6 7|||Prep|||of|||REQUIRED|||-NONE-|||0
A 7 11|||W0inc|||innovative engineering design||||REQUIRED|||-NONE-|||0
A 12 13|||Wci|||in|||REQUIRED|||-NONE-|||0

2http://www.comp.nus.edu.sg/~nlp/software.html
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